Чтение онлайн

на главную

Жанры

Интернет-журнал "Домашняя лаборатория", 2008 №1
Шрифт:

Субстратом для микробного синтеза может быть и минеральный углерод — углекислый газ. Окисленный углерод в данном случае с успехом восстанавливается микроводорослями при помощи солнечной энергии и водородоокисляющими бактериями при помощи водорода. На корм скоту используют суспензию водорослей. Для работы установок по выращиванию водорослей необходимы стабильные климатические условия — постоянные температуры воздуха и интенсивность солнечного света.

Наиболее перспективно получение белка с помощью водородоокисляющих бактерий, которые развиваются за счет окисления водорода кислородом воздуха. Энергия, высвобождающаяся в этом процессе, идет на усвоение углекислого газа. Для получения биомассы используются, как правило, бактерии рода Hydrogenomonas. Первоначально интерес к ним возник при разработке замкнутых систем жизнеобеспечения, а затем

их стали изучать с точки зрения использования в качестве продуцентов высококачественного белка. В институте микробиологии Геттингенского университета (Германия) разработан способ культивирования водородоокисляющих бактерий, при котором можно получать 20 г сухого вещества на 1 литр суспензии клеток. Возможно, в будущем эти бактерии станут основным источником пищевых микробных белков.

Исключительно доступным и достаточно дешевым источником углеводов для производства микробного белка является растительная биомасса. Любое растение содержит разнообразные сахара. Целлюлоза — полисахарид, состоящий из молекул глюкозы. Гемицеллюлоза состоит из остатков арабинозы, галактозы, маннозы, фруктозы. Проблема в том, что полисахариды древесины связаны жесткими оксифенилпропановыми звеньями лигнина — полимера, почти не поддающегося разрушению. Поэтому гидролиз древесины происходит только в присутствии катализатора — минеральной кислоты и при высоких температурах. При этом образуются моносахара — гексозы и пентозы. На жидкой, содержащей сахара, фракции гидролизата выращивают дрожжи. При кислотном гидролизе древесины образуется ряд побочных продуктов (фурфурол, меланины), а из-за высоких температур может произойти карамелизация сахаров. Эти вещества препятствуют нормальному росту дрожжей, их отделяют от гидролизата и по возможности используют. В качестве продуцентов используют штаммы Candida scotti и С. tropicalis.

Наиболее крупным производителем сырья для гидролизной промышленности являются деревообрабатывающие предприятия, отходы которых достигают ежегодно десятки миллионов тонн. К сожалению, нерационально или не используются вообще отходы производства лубяных волокон (из льна и конопли), картофелекрахмального производства, пивоваренной, плодоовощной, консервной промышленности, свекловичный жом.

Особого внимания заслуживают способы прямой биоконверсии продуктов фотосинтеза и их производных в белок с помощью грибов. Эти организмы благодаря наличию мощных ферментных систем способны утилизировать сложные растительные субстраты без предварительной обработки. Исследования условий биоконверсии растительных субстратов в микробный белок активно ведутся в США, Канаде, Индии, Финляндии, Швеции, Великобритании, в нашей стране и других странах мира. Однако в литературе сведения о широкомасштабном производстве белков микробного происхождения немногочисленны. Наиболее известным и доведенным до стадии промышленной реализации является процесс "Ватерлоо", разработанный в университете Ватерлоо в Канаде. Это процесс, основанный на выращивании целлюлозоразрушающих грибов Chaetomium cellulolyticum, можно осуществлять как в глубинной культуре, так и поверхностным методом. Содержание белка в конечном продукте (высушенном грибном мицелии) составляет 45 %. Финская фирма "Тампелла" разработала технологию и организовала производство белкового кормового продукта "Пекило" на отходах целлюлозно-бумажного производства. Продукт содержит до 60 % протеина с хорошим аминокислотным профилем и значительное количество витаминов группы В.

В большинстве стран — производителей молока традиционным способом утилизации сыворотки является скармливание её животным. Степень конверсии белка сыворотки в белок животного весьма невысока (для выработки 1 кг животного белка необходимо 1700 кг сыворотки). В последние 10–15 лет из сыворотки методом ультрафильтрации выделяют белки высокого качества, на основе которых делают заменители сухого обезжиренного молока и другие продукты. Концентраты можно использовать как пищевые добавки и компоненты детского питания. Из сыворотки производится и молочный сахар — лактоза, применяемая в пищевой и медицинской промышленности. При всем при этом объем промышленной переработки сыворотки составляет 50–60 % от её общего производства. Следовательно, налицо большие потери ценнейшего молочного белка и лактозы. Более того, возникает проблема утилизации отходов, так как процесс естественного разложения сыворотки происходит крайне медленно. Лактоза молочной сыворотки может служить источником

энергии для многих видов микроорганизмов, сырьем для производства продуктов микробного синтеза (органических кислот, ферментов, спиртов, витаминов) и белковой биомассы. Из всех известных микроорганизмов самым высоким коэффициентом конверсии белка сыворотки в микробный белок обладают дрожжи.

Впервые дрожжи на молочной сыворотке стали выращивать в Германии. В качестве продуцентов применяли различные штаммы сахаромицетов. Разработаны способы получения микробных продуктов, основанные на использовании лактозы как монокультурой, так и смесью дрожжей и бактерий. В настоящее время в качестве продуцентов используют дрожжи родов Candida, Trichosporon, Torulopsis. Молочная сыворотка с выросшими в ней дрожжами по биологической ценности значительно превосходит исходное сырье и её можно использовать в качестве заменителя молока. Приведенный перечень микроорганизмов и процессов получения белка одноклеточных не является исчерпывающим. Однако потенциал этой новой отрасли производства используется далеко не полностью. Кроме того, мы еще не знаем всех возможностей деятельности микроорганизмов в качестве продуцентов белка, но по мере углубления наших знаний, они будут расширены.

ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ МИКРОБНЫХ ЛИПИДОВ

Под липидами подразумеваются все растворимые в неполярных растворителях клеточные компоненты микроорганизмов. В настоящее время ведутся поиски новых источников получения жиров, в том числе и на технические нужды. Этим источником могут стать микроорганизмы, липиды которых после соответствующей обработки пригодны для использования в различных отраслях промышленности: медицинской, химико-фармакоцевтической, лакокрасочной, шинной и других, что позволит высвободить значительные количества масел животного и растительного происхождения.

Технологический процесс получения микробных липидов, в отличие от получения белковых веществ, обязательно включает стадию выделения липидов из клеточной массы методом экстракции в неполярном растворителе (бензине или эфире). При этом получают одновременно два готовых продукта: микробный жир (биожир) и обезжиренный белковый препарат (биошрот).

Сырьем для этого процесса являются те же среды, что и для производства кормовой биомассы. В процессе культивирования микроорганизмов на различных средах получаются три класса липидов: простые, сложные липиды и их производные.

Простые липиды — нейтральные жиры и воски. Нейтральные жиры (основные запасные компоненты клетки) — эфиры глицерина и жирных кислот, основная масса которых триацилглицериды (есть, впрочем ещё и моно- и диглицериды). Воски — эфиры жирных кислот или моноооксикислот и алифатических спиртов с длинной углеродной цепью. По структуре и свойствам близки к нейтральным липидам. Наибольшее количество нейтральных липидов синтезируют дрожжи и мицелиальные грибы. Простые липиды находят применение как технологические смазки в процессах холодной и тепловой обработки металлов. Продуцентами сложных липидов являются в основном бактерии.

Сложные липиды делятся на две группы: фосфолипиды и гликолипиды. Фосфолипиды (фосфоглицериды и сфинголипиды) входят в состав различных клеточных мембран и принимают участие в переносе электронов. Их молекулы полярны и при pH 7,0 фосфатная группа несет отрицательный заряд. Концентрат фосфолипидов находит применение в качестве антикоррозийной присадки к маслам и как добавка при флотации различных минералов. Гликолипиды в отличие от фосфолипидов не содержат молекулы фосфорной кислоты, но также являются сильнополярными соединениями за счет наличия в молекуле гидрофильных углеводных групп (остатков глюкозы, маннозы, галактозы и др.).

К производным липидов относят жирные кислоты, спирты, углеводороды, витамины Д, Е и К. Жирные кислоты представлены насыщенными и ненасыщенными с одной двойной связью кислотами нормального строения и четным числом углеродных атомов (пальмитиновая, стеариновая, олеиновая). Среди диеновых жирных кислот можно выделить линолевую. Двойные связи в ненасыщенных жирных кислотах микробных липидов часто располагаются так, что делят их на части, число углеродных атомов в которых кратно трем. Очищенные монокарбоновые кислоты с числом углеродных атомов 14–18 находят широкое применение в мыловаренной, шинной, химической, лакокрасочной и других отраслях промышленности.

Поделиться:
Популярные книги

Проклятый Лекарь IV

Скабер Артемий
4. Каратель
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь IV

Прометей: Неандерталец

Рави Ивар
4. Прометей
Фантастика:
героическая фантастика
альтернативная история
7.88
рейтинг книги
Прометей: Неандерталец

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Наследница Драконов

Суббота Светлана
2. Наследница Драконов
Любовные романы:
современные любовные романы
любовно-фантастические романы
6.81
рейтинг книги
Наследница Драконов

Книга пяти колец

Зайцев Константин
1. Книга пяти колец
Фантастика:
фэнтези
6.00
рейтинг книги
Книга пяти колец

Приручитель женщин-монстров. Том 9

Дорничев Дмитрий
9. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 9

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая