Интернет-журнал "Домашняя лаборатория", 2008 №1
Шрифт:
Необходимо отметить, что ростовые кривые для разных критериев не идентичны. Дисбаланс между скоростями клеточного размножения (число клеток), синтеза структурных элементов клетки (сухая масса) и увеличения объема и содержания вакуолей (сырая масса) отражает специфику онтогенеза высшего растения.
Для глубинного культивирования растительных клеток применимы способы, разработанные в микробиологии. Различают два вида систем культивирования: открытую и закрытую.
Для закрытой системы характерен периодический режим выращивания. Клеточная масса (инокулят) помещается в определенный объем среды. Система закрыта по всем параметрам, кроме газов, до конца выращивания. Периодически подается свежая питательная среда, а старая удаляется в том же
Открытые (проточные) культуры характеризуются поступлением свежей питательной среды, при котором отбирается не только старая питательная среда, но и часть урожая клеточной массы.
Наиболее изучено и распространено закрытое глубинное культивирование. Для аэрации и перешивания используют различную аппаратуру: роллеры, качалки, магнитные мешалки и т. д. Очень большое значение для роста и биосинтеза клеток in vitro имеют технические характеристики систем культивирования. При масштабировании от небольших по объему культур в колбах до больших многолитровых ферментеров меняются многие параметры культивирования, в частности аэрация и перемешиваемость.
Для культивирования суспензий в производственных масштабах применяется аппаратура, разработанная для микробиологической промышленности, однако исследования последних лет показали, что растительные клетки в силу своих специфических особенностей требуют особых сосудов для культивирования. Клетки растений в десятки, сотни раз крупнее клеток бактерий и грибов, кроме того, их размеры меняются в процессе онтогенеза. Если в начале экспоненциальной фазы роста они мелкие и плотные, то в стационарной фазе роста они сильно увеличиваются в размерах и вакуолизируются. Чем крупнее становится клетка, тем больше возрастает опасность ее механического повреждения в процессе перемешивания. В то же время клетки растений, крупные и тяжелые, требуют эффективного перемешивания. Оседание их приводит к появлению «мертвых» зон в сосудах, в которых происходит быстрое накопление и старение клеток. Для культуры клеток женьшеня отрицательное влияние механического стресса при выращивании в ферментере с турбинными мешалками сказывалось на жизнеспособности клеток уже при скоростях мешалок свыше 100–350 об/мин, это отрицательно влияло на синтез ими антрахинонов. Устойчивость штамма к механическому стрессу является важным требованием к культуре и трудной задачей для исследователей.
Мягкое перемешивание и аэрацию обеспечивает пневматический способ перемешивания потоком сжатого стерильного воздуха, подаваемого в ферментер с восходящим током воздуха. К сожалению, и этот способ имеет свой недостаток, потому что в культуральной среде возникает избыток воздуха, приводящий к кислородному голоданию[69]. От концентрации кислорода в среде зависят рост и вторичный метаболизм клеток. В микробиологических системах изучена взаимозависимость роста биомассы, выхода искомого продукта и снабжения кислородом. Для растений таких данных нет.
На рост клеток, кроме кислорода, могут влиять и другие газы. Например, углекислый газ может существенно влиять на длину лаг-фазы. Высокая степень аэрации может оказывать негативное действие на рост и синтез продуктов вторичного метаболизма, поскольку удаляются углекислый газ и летучие соединения. Клетки растений in vitro по сравнению с микроорганизмами имеют низкую интенсивность дыхания, что тоже должно учитываться при конструировании сосуда для культивирования. Сравнивали рост и образование метаболитов клетками в ферментерах разных типов. Клетки моринды лимонолистной, культивируемые в ферментерах с продувкой воздуха, содержали антрахинона на 30 % больше, чем в перемешиваемых колбах, и в два раза больше, чем в ферментерах других систем. Выход биомассы клеток не менялся в зависимости от типа биореактора. Клетки барвинка розового (Catharantus roseus) также синтезировали больше индольных алкалоидов при культивировании в ферментере с продувкой воздуха, чем в биореакторах с механическим
Отличительная особенность суспензионных культур клеток растений — высокая плотность, необходимая для роста. Поэтому другим осложнением при культивировании клеток растений является увеличение вязкости, сопровождающее рост биомассы. Это ведет к адгезии. Адгезия (прилипание) клеток друг к другу, на поверхностях культурального сосуда и погруженных в него мешалок и датчиков вызывает затруднения. В верхней части сосуда постепенно может образовываться пена, состоящая из выделяемых клетками белков и полисахаридов. В процессе культивирования клетки слипаются и часть из них скапливается в этой пене, образуя «корку», или «безе». С увеличением биомассы клеток увеличивается и эта «корка», снижая интенсивность перемешивания, что, в конце концов, может привести культуру к гибели.
Клетки растений обладают меньшей физиологической и метаболической активностью по сравнению с микроорганизмами. Время генерации (интервал времени между двумя последовательными клеточными делениями) растительной клетки в 60-100 раз превосходит время генерации микробной клетки. Пул пролиферирующих клеток не превышает 50–60 %, многие клетки быстро прекращают деление и переходят в фазу покоя.
Все эти обстоятельства определяют продолжительный рост популяции клеток при накопительном, или периодическом, выращивании. Поддержание стерильности длительное время также является одной из технических проблем, особенно при непрерывном культивировании.
Периодическое, или накопительное, культивирование — это самый простой способ выращивания клеток, являющийся пока традиционным. Суспензионные культуры используют для промышленного получения вторичных метаболитов. Вещества, продуцируемые растительными клетками, используются в медицине, парфюмерной промышленности, растениеводстве и других отраслях промышленности. К ним относятся: алкалоиды, терпеноиды, гликозиды, полифенолы, полисахариды, эфирные масла, пигменты, антиканцерогены (птотецин, харрингтонин), пептиды (ингибиторы фитовирусов). В настоящее время в разных странах около ста видов растений используется в биосинтетической промышленности для получения экономически важных веществ, среди них — женьшень, раувольфия змеиная, наперстянка шерстистая и пурпурная, диоскорея дельтовидная, воробейник, беладонна, паслен дольчатый, дурман обыкновенный, ландыш майский, клещевина, агава, мак снотворный и др.
Получение вторичных метаболитов имеет свои особенности. Деление клеток, приводящее к увеличению клеточной биомассы, и синтез вторичных метаболитов разобщены во времени. Накопление вторичных метаболитов возрастает в фазе замедленного роста клеточной популяции и достигает максимума в стационарной фазе. Некоторые алкалоиды активно синтезируются в фазе максимальной митотической активности (экспоненциальный рост), что является исключением. Знание таких закономерностей позволяет регулировать процессы получения ценных веществ. Механизмы и условия, блокирующие активный рост клеток и клеточную пролиферацию, одновременно активируют ферменты вторичного метаболизма. Неспецифические стрессовые условия, воздействующие на клетки в конце экспоненциальной фазы, могут стимулировать переход к синтезу вторичных метаболитов и увеличивать их выход. Необходимо учитывать, что вопрос взаимодействия первичного и вторичного метаболизма, рассмотренный нами в упрощенном виде, намного сложнее.
Культивирование отдельных клеток
Отдельные клетки культивируют для получения клонов, изучения их генетической и физиологической изменчивости или стабильности. Кроме того, культивирование отдельных клеток позволяет изучать условия, определяющие возникновение стимулов к делению у клеток, изолированных от влияния других клеток популяции или ткани. Отдельные клетки также важны для клоновой селекции мутантных, гибридных и трансформированных линий. Обычно в такие клетки вводят маркерные гены, которые позволяют осуществлять селекцию.