Чтение онлайн

на главную

Жанры

Интернет-журнал "Домашняя лаборатория", 2008 №1
Шрифт:

Получение стабильно устойчивых линий — процесс длительный. Как правило, селекция начинается с получения достаточного количества каллусной массы из изолированных растительных эксплантов, использующейся в дальнейшем для определения концентрации селективного фактора (построение дозовой кривой), при которой наблюдается одновременно рост каллусной ткани, и в то же время часть каллусных колоний погибает. Выбранная концентрация селективного фактора признается оптимальной и используется в дальнейших экспериментах. Так как первично полученные на средах с селективными факторами колонии клеток могли возникнуть вследствие физиологической адаптации или определенного состояния дифференцировки клеток и не быть генетически устойчивыми, то в течение последующих 4–6 субкультивирований

на селективной среде проверяется стабильность устойчивости полученных клонов. Затем их переносят на среду без селективного фактора и субкультивируют еще 2–3 пассажа. И только после повторного возвращения в селективные условия отбирают стабильные клоны, из которых пытаются получить растения-регенеранты. Однако работы, проведенные с получением растений, устойчивых к повышенным солям, а также к токсинам, выделенным из грибов — возбудителей болезней, показали, что устойчивость клетки и растения к исследуемому селективному фактору может совпадать и не совпадать. Прямая корреляция между устойчивостью растений и клеток in vitro отмечена лишь для низких температур, устойчивостью к гербицидам, высоким концентрациям алюминия и другим факторам.

Большое число работ по культивированию каллуса, с целью получения нового селекционного материала, проведено на пшенице, ячмене, рисе, сорго, а также на картофеле, томатах, люцерне и, крайне редко, на древесных. Уже достигнуты первые положительные результаты по получению растений пшеницы, риса, картофеля, устойчивых к NaCl или Na2SO4. Получены клетки, а из них растения моркови, которые синтезируют в 20 раз больше метионина, в 30 раз — триптофана, в 5 раз — лизина путем добавления в питательную среду токсичных аналогов аминокислот. Для картофеля получены растения, устойчивые к кольцевой гнили. Что касается древесных, то для них работы в этом направлении крайне редки и часто имеют поисковый характер. Таким образом, использование каллусной культуры в селекционных целях открывает огромные возможности в создании новых форм растений, несущих ценные признаки, необходимые для человечества.

Наряду с перечисленными выше объектами (каллусная, суспензионная культура, изолированные протопласты), в качестве исходного материала для селекции могут быть использованы культуры соматических или андрогенных эмбриоидов, такие органогенные экспланты, как сегменты листьев или различные меристематические и стеблевые части растений, а также культура изолированных зародышей. Например, путем культивирования и селекции in vitro зародышей из семян получены растения ячменя, устойчивые к аналогам аминокислот, с улучшенным содержанием белка. Для картофеля разработан эффективный метод обработки побегов и черенков мутагеном, приводивший к получению химерных мутантов хлорофиллдефектности и антибиотикоустойчивости. При культивировании пыльников яровой пшеницы сорта Саратовская-29 и Московская-35 на питательных средах с повышенным содержанием солей хлорида натрия получены соматические эмбриоиды, а в дальнейшем растения-регенеранты, проявившие повышенную солеустойчивость (Беккужина, 1993).

Таким образом, проведение селекции на клеточном уровне позволяет создавать новые формы растений в 2–4 раза быстрее по сравнению с традиционными способами селекции.

Преимущества метода клеточной селекции in vitro

По сравнению с экспериментальным мутагенезом на уровне целых растений метод мутагенеза на уровне клеток имеет ряд преимуществ:

— экономится площадь, так как в одной чашке Петри диаметром 10 см можно культивировать 107-108 клеток, а для такого же количества растений необходима площадь свыше тысячи гектаров;

— мутантные признаки на уровне отдельных клеток проявляются довольно быстро;

— возможно получение новых типов мутаций, в том числе и биохимического характера;

— экономится время и трудозатраты на получение нового желаемого признака.

Основным требованием для успешного использования клеточного мутагенеза является хорошо

разработанная система регенерации растений. Важным условием является также возможность получения гаплоидов у того или иного вида растений. В дальнейшую селекционную работу включаются только те генотипы, у которых мутации проявляются на уровне целого растения.

Растения с измененными признаками, полученные в результате мутагенеза на клеточном уровне, называются вариантами (термин «мутант» используется тогда, когда мутация подтверждается генетическими или молекулярно-генетическими методами). Рекомендуются следующие обозначения: R0 — растения-регенеранты, полученные из соответствующих клеточных клонов, R1, R2 и т. д. — первое и последующее поколения после самоопыления.

Общая схема получения мутантных форм путем селекции на клеточном уровне состоит из нескольких этапов (рис. 17):

Рис. 17. Схема получения мутантных форм путем клеточной селекции

(по В.И. Артамонову, 1989)

Измененные при мутагенной обработке клетки могут быть выделены в условиях культивирования in vitro путем прямого и непрямого отборов, а также при тестировании отдельных клеточных колоний. Прямой отбор состоит в добавлении к питательным средам отдельных компонентов, к которым обычные, неизмененные клетки не устойчивы. Непрямой отбор (негативная селекция) заключается в создании условий культивирования, при которых рост неизмененных клеток либо задерживается, либо эти клетки погибают (например, культивирование при низких или высоких температурах на средах с недостатком отдельных компонентов и т. д.).

Существует ряд факторов, ограничивающих селекцию in vitro. Многие хозяйственно важные признаки, такие, как урожайность, количество зерна, устойчивость к пестицидам и другие трудно или практически невозможно получить при культивировании in vitro поскольку они не проявляются на клеточном уровне. Недостаточно также биохимических и молекулярных маркеров, которые коррелировали бы с этими признаками на уровне целых растений.

Не все селектируемые признаки, проявляющиеся на уровне клеток, сохраняются на уровне растений — регенерантов. Тому несколько причин: некоторая часть изменений не затрагивает генетический аппарат клетки, поэтому не сохраняется у потомков; генетические изменения могут элиминироваться в процессе дифференциации и мейоза; функция мутированного гена может быть ограничена состоянием дифференцируемых и культивируемых клеток; мутация одного гена может сопровождаться активацией различных генов, кодирующих изоферменты; часть генотипов неспособна регенерировать нормальные фертильные растения.

КЛОНАЛЬНОЕ МИКРОРАЗМНОЖЕНИЕ И ОЗДОРОВЛЕНИЕ РАСТЕНИЙ

Преимущества микроклонального размножения перед традиционными способами размножения растений. История метода.

В природе существует два способа размножения растений: половой (семенной) и вегетативный. Оба эти способа имеют как свои преимущества, так и недостатки.

К недостаткам семенного размножения относятся генетическая пестрота семенного материала и длительность ювенильного периода.

При вегетативном размножении генотип материнского растения сохраняется, а также сокращается длительность ювенильного периода. Однако большинство видов плохо размножается вегетативным способом, к ним относятся многие древесные породы. Например, эффективность размножения, даже на ювенильной стадии, дуба, сосны, ели, орехоплодных не очень высока. Кроме того, с помощью черенкования невозможно размножать многие виды древесных растений в возрасте старше 10–15 лет. Трудно получить стандартный посадочный материал, так как существует возможность накопления и передачи инфекции. Операции по размножению с помощью прививок сложны и трудоемки.

Поделиться:
Популярные книги

Газлайтер. Том 4

Володин Григорий
4. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 4

Сумеречный стрелок 8

Карелин Сергей Витальевич
8. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Сумеречный стрелок 8

Кодекс Охотника. Книга XIX

Винокуров Юрий
19. Кодекс Охотника
Фантастика:
фэнтези
5.00
рейтинг книги
Кодекс Охотника. Книга XIX

Возвышение Меркурия. Книга 3

Кронос Александр
3. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 3

Барон нарушает правила

Ренгач Евгений
3. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон нарушает правила

Санек

Седой Василий
1. Санек
Фантастика:
попаданцы
альтернативная история
4.00
рейтинг книги
Санек

Довлатов. Сонный лекарь 3

Голд Джон
3. Не вывожу
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь 3

Кремлевские звезды

Ромов Дмитрий
6. Цеховик
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Кремлевские звезды

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Ваше Сиятельство 7

Моури Эрли
7. Ваше Сиятельство
Фантастика:
боевая фантастика
аниме
5.00
рейтинг книги
Ваше Сиятельство 7

Особое назначение

Тесленок Кирилл Геннадьевич
2. Гарем вне закона
Фантастика:
фэнтези
6.89
рейтинг книги
Особое назначение

Инферно

Кретов Владимир Владимирович
2. Легенда
Фантастика:
фэнтези
8.57
рейтинг книги
Инферно

Охотник за головами

Вайс Александр
1. Фронтир
Фантастика:
боевая фантастика
космическая фантастика
5.00
рейтинг книги
Охотник за головами

Назад в СССР: 1985 Книга 2

Гаусс Максим
2. Спасти ЧАЭС
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в СССР: 1985 Книга 2