Интернет-журнал "Домашняя лаборатория", 2008 №3
Шрифт:
4. Isco, Inc. (Lincoln, Nebraska) предлагает три фазы для покрытий: ковалентно связанную фазу С18 (белки), глицериновое покрытие (белки, пептиды) и сульфокислотное покрытие (нуклеотиды).
5. Коммерчески доступны также капилляры с различными полимерными покрытиями для применения в ГХ.
Тот факт, что в торговле других предложений нет, показывает, что многие покрытия не соответствуют требованиям рутинных аналитических измерений. Так, получаемые обычными способами слои на стенках капилляров являются прежде всего гидролитически нестабильными, тем более, что в КЭ многие разделения проходят в среде сильных оснований. Кроме того, экранирование активных адсорбционных центров на стенках капилляров является в большинстве
Полимерные покрытая проявляют себя в последнем случае лучше, однако, как показывают опыты по разделению белков, и здесь при рН>9 не обеспечивается гидролитическая стабильность.
Что касается разделения биомолекул, то ни одно из известных покрытий не позволяет одинаково хорошо разделять сильно различающиеся пробы (белков). Поэтому цель дальнейших исследований в этой области должна заключаться в получении более стабильных и универсальных покрытий.
В таблице 25 проведено сопоставление различных свойств модифицированных и немодифицированных капилляров.
10. Мицеллярная электрокинетическая хроматография
В КЗЭ нейтральные пробы достигают детектора вместе с катионами и анионами и не могут быть разделены. Метод МЭКХ, предложенный Терабе и др. в 1984 году, позволяет разделять незаряженные компоненты пробы за счет различной вероятности нахождения их в водной подвижной и псевдостационарной фазах. С помощью добавок детергентов к буферу при превышении ККМ образуются мицеллы. Эти мицеллы носят гидрофобный характер внутри и заряжены снаружи, чем и достигается электрофоретическая подвижность в электрическом поле. В зависимости от знака заряда эта электрофоретическая подвижность направлена в сторону катода или анода. МЭКХ может быть реализована в той же аппаратуре, что КЗЭ и требует лишь добавок детергента. Наиболее часто в качестве детергента применяют ДДСН. Получаемые мицеллы имеют отрицательный заряд и, как следствие, приобретают электрофоретическую подвижность в направлении анода. По аналогии с КЗЭ эффективная скорость перемещения компонентов пробы, так же, как и мицелл, представляет собой векторную сумму электрофоретической и электроосмотической скоростей. На рис. 72 представлена схема разделения посредством МЭКХ. Речь идет о наиболее часто встречающемся случае, когда анионный детергент растворен в нейтральном или щелочном буфере.
Рис. 72. Механизм разделения в МЭКХ
ЭОП направлен в сторону катода. Если вклад электрофоретической подвижности мицелл меньше вклада электроосмотической подвижности, то мицеллы движутся в сторону катода, т. е. в сторону детектора. Полярные молекулы, которые задерживаются только в водной фазе, движутся со скоростью электроосмотического потока и, спустя "мертвое" время, достигают детектора. Сильно гидрофобные молекулы пробы задерживаются прежде всего внутри мицелл и движутся со скоростью мицеллы. Следовательно, задержанные молекулы пробы появляются в детекторе в отрезок времени между to и tMC. Получаемое разделение нейтральных веществ основано на их различном распределении между буферным раствором и внутренней частью мицелл. Вследствие того, что молекулы пробы взаимодействуют с псевдостационарной фазой, точность метода МЭКХ соответствует точности обычного хроматографического метода.
Значение k', по аналогии с хроматографией, можно определить как соотношение между числом молекул пробы в подвижной (naq)
k' =(nmc)/(naq)
С учетом того, что стационарная фаза подвижна, для значения V:' получим:
k' = (tR – to)/{to(1 — tR/tMC)}
В отличие от ВЭЖХ, в данном случае через детектор могут проходить также молекулы пробы с бесконечными значениями k'. В этом случае молекулы пробы задерживаются исключительно внутри мицелл. Влияние распределения ионов пробы между псевдостационарной фазой и буфером на разделение смеси веществ представлено на рис. 73.
Рис. 73. А) Соотношение между временем миграции и значением k'. В) Разделение методом МЭКХ ароматических соединений:
буфер: 110 мМ ДДСН в 25 мМ борате, pH 8.5: капилляр 75 мкм, 50/70 см; напряжение 20 кВ, детектирование 200 нм; 1 — формамид (to), 2 — анилин, 3 — фенол, 4 — бензиловый спирт, 5 — бензойная кислота, 6 — бензальдегид, 7 — нитробензол, 8 — фенилацетон, бензилцианид, 9 — ацетофенон, 10 — толуол, 11 — хлорбензол, 12 — этилбензол+о-ксилол, 13 — нафталин, 14 — судан III (1 мс).
При постоянном Дк' расстояния между пиками с ростом значения k' уменьшаются. Для вычисления k' необходимо знать to и tMC. Однако для МЭКХ не существует идеального маркера. Маркер для to должен быть электрически нейтральным и полностью свободным от мицелл. В качестве инертных маркеров подходят, например, ацетон; формамид или метанол, взаимодействием которых с мицеллами можно пренебречь и которые движутся со скоростью ЭОП. В дальнейшем эти вещества можно детектировать с помощью УФ-поглощения или изменения показателя преломления как пик показателя преломления.
Труднее определить скорость движения мицелл. В качестве маркера для (мс находят применение такие водорастворимые соединения, которые задерживаются только внутри мицелл, например, судан III и судан IV.
Область применения метода МЭКХ не ограничивается только разделением нейтральных веществ, им можно разделять и заряженные пробы. Распределение веществ между водной и мицеллярной фазами может приводить к росту селективности и воздействовать тем самым на разделение ионов с очень схожими электрофоретическими подвижностями. В этих случаях разрешение пиков, достигаемое методом МЭКХ, перекрывает разрешение КЗЭ.
Для МЭКХ необходимы ионные детергенты. Многие детергенты можно приобрести в торговле, однако только немногие из них пригодны в качестве добавок в МЭКХ. Для того, чтобы детергент подходил к МЭКХ, он должен отвечать следующим требованиям:
— растворимость в соответствующем буфере должна быть достаточно высокой (> ККМ), чтобы могли образоваться мицеллы;
— мицеллярный раствор должен быть гомогенным и УФ-прозрачным;
— мицеллярный раствор должен обладать невысокой вязкостью.