Чтение онлайн

на главную

Жанры

Исчезающая ложка, или Удивительные истории из жизни периодической таблицы Менделеева
Шрифт:

Слово «Иттербю» переводится с шведского языка как «отдаленная деревня». Это местечко ничем не отличается от любой другой прибрежной шведской деревушки: дома с красными крышами стоят у самой воды, на окнах большие белые ставни, в просторных дворах растут высокие ели. Люди перемещаются по архипелагу на паромах. Улицы названы в честь минералов и элементов [30] .

Карьер в Иттербю прорыт с самой вершины холма до юго-восточной оконечности острова. Там добывали руду для производства фарфора и для других целей. Ученых гораздо больше интересовало то, что при обработке этих пород образовывались экзотические красители и разноцветные газы. Сегодня мы уже знаем, что яркие краски – это предсмертные вздохи лантаноидов, а шахта в Иттербю необычайно богата этими металлами сразу по нескольким причинам геологического характера. Давным-давно все химические элементы были равномерно распределены в земной коре, как будто какой-то повар высыпал в кипящий котел горсть пряностей и тщательно их перемешал. Но атомы металлов, особенно лантаноидов, обычно «ходят косяками». По мере того как расплавы пород остывали, лантаноиды слипались друг с другом. В итоге целые залежи лантаноидов сосредоточились в районе Швеции, точнее говоря – под Швецией. А поскольку Скандинавия находится практически на линии тектонического разлома, породы, богатые лантаноидами, в результате движения геологических плит поднялись наверх из глубин земной коры. Кстати, этому процессу

способствуют гидротермальные источники, которыми так увлекался Бунзен. Наконец, в эпоху последнего оледенения, мощные скандинавские ледники стесали на полуострове толстый слой поверхностных пород. Именно поэтому в окрестностях Иттербю оказались богатые лантаноидами минералы, добывать которые удавалось без особого труда.

30

Об истории и геологии Иттербю мне рассказал Джим Маршалл, химик и историк из университета Северного Техаса. Он также поведал мне интересные подробности о том, как это местечко выглядит сегодня. Он был исключительно любезен, уделив мне свое время и оказав помощь. Кроме того, он прислал мне кое-какие отличные фотографии. Джим путешествовал по всему миру, стремясь побывать во всех тех местах, где был открыт хотя бы один новый элемент. Поэтому он и оказался в Иттербю.

Но, хотя в Иттербю и сложились нужные экономические условия, в которых было выгодно развивать горнодобывающую промышленность, а геология этих мест была крайне интересной с научной точки зрения, в регионе долгое время царили суровые нравы. К концу 1600-х годов Скандинавия едва успела перерасти ментальность жестоких викингов. В XVII веке на полуострове процветала охота на ведьм и колдунов, в стороне от этого варварства не оставались даже университеты, а его масштабы могли бы ужаснуть и жителей Салема [31] . Но в XVIII веке, когда Швеция постепенно установила политическую власть над всем полуостровом, а шведское Просвещение завоевало регион в культурной сфере, в сознание потомков викингов стал проникать рационализм. В Скандинавии стали появляться выдающиеся ученые, которых было удивительно много, учитывая, каким малонаселенным оставался полуостров. Одним из крупнейших естествоиспытателей был Юхан Гадолин. Будущий великий химик родился в 1760 году в семье потомственных академиков (отец Гадолина одновременно руководил кафедрами физики и теологии, а дед совмещал еще более несхожие посты – профессора физики и епископа).

31

В городе Салем (Сейлем) на территории нынешнего штата Массачусетс в 1692 году прошел знаменитый ведовской процесс, в результате которого 19 человек было повешено, а один – задавлен камнями. – Прим. пер.

В молодости Юхан Гадолин немало попутешествовал по Европе. В частности, он побывал в Англии, где подружился со знаменитым изготовителем фарфора Джозайей Веджвудом и даже посетил месторождения глины, откуда Веджвуд брал сырье. Вернувшись на родину, Гадолин поселился в городе Турку, который сегодня находится на территории Финляндии на другом берегу Балтийского моря. В Турку Гадолин приобрел славу геохимика. Геологи-любители стали доставлять Гадолину из Иттербю необычные породы, чтобы проконсультироваться об их составе. Постепенно благодаря публикациям Гадолина научное сообщество все больше узнавало об этой замечательной маленькой шахте.

Конечно, у Гадолина не было ни инструментария, ни химической теории, которая позволила бы выделить все четырнадцать лантаноидов, но шведский ученый проделал большую работу, определив основные группы этих элементов. Охота за ними стала для него своеобразным хобби. Когда гораздо позже, на закате жизни Менделеева, ученые вновь заинтересовались Иттербю и уточнили результаты Гадолина при помощи новых и более точных инструментов, новые элементы посыпались как из рога изобилия. Гадолин заложил в номенклатуре элементов «географическую» тенденцию, назвав один из гипотетических элементов «иттрием». Химики поддержали эту традицию и стали именовать новые элементы в честь их общей «родины», неоднократно обессмертив Иттербю в периодической системе. С Иттербю связаны названия семи элементов – такой чести не удостаивались никакое другое место, человек или вещь. Названия иттербий, иттрий, тербий и эрбий происходят непосредственно от этого топонима. Оставалось назвать еще три открытых элемента, но тут у химиков закончились буквы (согласитесь, «рбий» звучит некрасиво). Поэтому в таблице появились гольмий, названный в честь Стокгольма, тулий, чье название напоминает о мифической стране Туле, которую античные авторы помещали на месте Скандинавии. Наконец, по настоянию Лекока де Буабодрана, один из элементов был назван гадолинием, в честь самого Юхана Гадолина.

Шесть из семи элементов, открытых в Иттербю, оказались недостающими лантаноидами Менделеева. Но история могла сложиться совсем иначе, ведь Менделеев постоянно корректировал свою таблицу. Он мог бы самостоятельно заполнить целый нижний ряд таблицы, расположенный вслед за церием, – если бы только сам отправился на северо-запад, через Финский залив и Балтийское море, на Галапагосские острова [32] периодической системы.

Часть II. Как создаются и расщепляются атомы

32

Галапагосский архипелаг, расположенный к западу от Южной Америки, известен необычной фауной, многие представители которой нигде более не встречаются. – Прим. пер.

4. Откуда берутся атомы: «Мы все – звездная материя [33] »

Откуда берутся элементы? В течение многих веков в науке процветало заблуждение, что они ниоткуда не берутся. Велись долгие метафизические споры о том, кто (или Кто) мог создать мироздание и почему Он это сделал, но все соглашались, что все элементы – ровесники нашей Вселенной. Они не появляются и не исчезают, а просто существуют. Более новые теории, в частности теория Большого взрыва, сформулированная в 1930-е годы, также принимали эту точку зрения за аксиому. Если все началось около четырнадцати миллиардов лет назад с первозданного мирового зернышка, в котором содержалась вся материя Вселенной, то все, что окружает нас сегодня, очевидно, было заключено именно в нем. Конечно, там не было ни алмазных диадем, ни жестяных банок, ни алюминиевой фольги, но всё сырье для создания элементов там имелось.

33

Намек на высказывание астрофизика Карла Сагана: «Какая-то часть нашего существа помнит, откуда мы родом. Мы стремимся вернуться. И можем это сделать. Ведь космос и внутри нас. Мы все – звездная материя». – Прим. пер.

Один ученый подсчитал, что уже через десять минут после Большого взрыва сформировалась вся известная материя, а потом резюмировал: «элементы были изготовлены быстрее, чем хорошая хозяйка зажарит утку с картошкой». Опять же, здесь мы имеем дело с общепринятым мнением о том, что история всех элементов протекает исключительно стабильно и является, в сущности, «астроисторией».

Но после 1930-х эта теория начала постепенно распадаться. К 1939 году немецкие и американские ученые доказали [34] , что энергия Солнца и других звезд выделяется в ходе реакций ядерного синтеза, при которых из атомов водорода образуются атомы гелия. Объемы этой энергии совершенно несоизмеримы с крошечными размерами атомов. Другие ученые парировали: хорошо, количество водорода и гелия может незначительно колебаться, но нет никаких доказательств, что содержание других элементов в природе хоть как-то изменяется. Но наука не стояла на месте, телескопы совершенствовались, и ряды скептиков множились. Теоретически в результате Большого взрыва элементы должны были быть «равномерно разбросаны» во всех направлениях. Но наблюдения показали, что в самых молодых звездах содержатся почти исключительно водород и гелий, а в старых встречаются десятки элементов. Кроме того, некоторые крайне нестабильные элементы, отсутствующие на Земле, – например, технеций – существуют в некоторых звездах с «экзотической химией» [35] . Какие-то силы должны ежедневно создавать такие элементы.

34

Ганс Бете – один из ученых, который участвовал в описании реакций ядерного синтеза в звездах. Он получил за это премию в размере 500 долларов. Эти деньги он потратил на то, чтобы подкупить нацистские власти и вывезти из Германии свою мать и, как ни странно, мебель.

35

Интересный факт: астрономы обнаружили звезды странного типа, в которых в ходе неизвестного процесса синтезируется элемент прометий. Самая известная из них – звезда Пшибыльского. Наиболее интересная особенность таких звезд заключается в том, что прометий, вероятно, образуется на их поверхности, а не в недрах, где протекает большинство ядерных реакций. В противном случае мы не могли бы зафиксировать этот короткоживущий радиоактивный элемент, поскольку он просто не просуществовал бы миллионы лет, необходимые для «всплытия» элемента из ядра во внешние слои звезды.

В середине 1950-х годов некоторые дальновидные астрономы пришли к выводу, что звезды можно сравнить с небесными вулканами. Группа ученых – Джеффри Бербидж, Элинор Маргарет Бербидж, Уильям Фаулер и Фред Хойл – в общих чертах описали теорию звездного ядерного синтеза в своей знаменитой статье, вышедшей в 1957 году. Специалисты называют ее просто – В2FH [36] . В отличие от большинства научных статей, B2FH имеет эпиграф, в который вынесены две зловещие и противоречивые цитаты из Шекспира. В них авторы задаются вопросом, управляют ли звезды судьбами человечества [37] . И далее отстаивают точку зрения о том, что да, управляют. В начале статьи рассказывается, что в начале времен Вселенная была первозданной кашей из водорода, с небольшими включениями гелия и лития. Постепенно атомы водорода стали слипаться друг с другом, образуя звезды. Огромное гравитационное давление, возникавшее внутри звезд, провоцировало слияние атомов водорода в атомы гелия. В результате этого процесса сияют все звезды в небе. Но этот процесс, исключительно важный в космологии, неинтересен с научной точки зрения. В течение миллиардов лет звезда только и делает, что выпекает гелий. Лишь после полного выгорания водорода, указывают авторы В2FH, – и в этом заключается основная научная ценность статьи – ситуация начинает стремительно меняться. Звезда, которая целую вечность висела в пространстве и неспешно перерабатывала свой водород, преобразуется в нечто новое гораздо быстрее, чем мог бы мечтать любой алхимик.

36

По первым буквам фамилий авторов. – Прим. пер.

37

Вот эти цитаты: «Звезды неба, // Святые звезды правят человеком!» («Король Лир», акт 4, сцена 3); «Поверь мне, Брут, что может человек // Располагать судьбой, как хочет, // Не в звездах, нет, а в нас самих ищи // Причину, что ничтожны мы и слабы» («Юлий Цезарь», акт 1, сцена 2). Цитируется в переводах А. Дружинина и П. Козлова.

Звезды, отчаянно пытающиеся поддержать высокую температуру при отсутствии водорода, начинают сжигать и плавить в своих недрах атомы гелия. Иногда два атома гелия целиком сплавляются друг с другом, образуя элементы с четными номерами, а в других случаях они теряют при этом часть протонов и нейтронов; так получаются элементы с нечетными номерами. Достаточно скоро внутри звезд накапливаются существенные количества лития, бора, бериллия и особенно углерода. В основном это происходит в глубине звезды – внешний слой, сравнительно холодный, состоит преимущественно из водорода до самой гибели звезды. К сожалению, при сжигании гелия выделяется меньше энергии, чем при сжигании водорода, поэтому звезда успевает израсходовать весь свой гелий всего за несколько сотен миллионов лет. Некоторые маленькие звезды после этого «умирают», на их месте остаются массы сплавленного углерода, известные нам как «белые карлики». Более тяжелые звезды (не менее чем в восемь раз массивнее Солнца) продолжают бороться за жизнь, синтезируя из углерода шесть еще более тяжелых элементов, вплоть до магния. Так они могут просуществовать еще несколько сотен тысяч лет. После данного углеродного этапа умирает еще часть звезд, но самые крупные и горячие звезды (в недрах которых может поддерживаться температура до пяти миллиардов градусов) за несколько миллионов лет сжигают и эти тяжелые элементы. В статье В2FH авторы анализируют разнообразные реакции синтеза и объясняют, как создаются все легкие элементы вплоть до железа. Эти процессы – настоящая эволюция элементов. В наше время благодаря статье В2FH астрономы могут объединить все элементы от лития до железа в категорию «звездных». Если на какой-то звезде обнаружено железо, то можно не заниматься поисками более легких элементов, поскольку на звезде обязательно присутствуют и все остальные двадцать пять первых элементов периодической системы.

Логично предположить, что в более крупных звездах должен происходить и дальнейший синтез с участием атомов железа, а также синтез более тяжелых атомов, до самых глубин периодической системы. Но здесь логика вновь нас подводит. Если обратиться к математике и подсчитать, сколько энергии выделяется при слиянии атомов, то можно убедиться, что на слияние легких элементов в атом железа с его двадцатью шестью протонами требуется очень много энергии. Таким образом, ядерный синтез элементов тяжелее железа [38] уже не идет на пользу изголодавшейся звезде. Железное ядро – последняя часть жизненного пути самых долговечных звезд.

38

Если быть абсолютно точным, в звездах не происходит непосредственного синтеза железа. Сначала образуется никель, двадцать восьмой элемент, это происходит в результате слияния двух атомов кремния (четырнадцатый элемент). Но никель нестабилен, и абсолютное большинство его атомов распадается всего за несколько месяцев, превращаясь в атомы железа.

Поделиться:
Популярные книги

Смерть может танцевать 4

Вальтер Макс
4. Безликий
Фантастика:
боевая фантастика
5.85
рейтинг книги
Смерть может танцевать 4

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Я не дам тебе развод

Вебер Алиса
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я не дам тебе развод

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Тринадцатый II

NikL
2. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый II

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Гарем вне закона 18+

Тесленок Кирилл Геннадьевич
1. Гарем вне закона
Фантастика:
фэнтези
юмористическая фантастика
6.73
рейтинг книги
Гарем вне закона 18+

Счастье быть нужным

Арниева Юлия
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Счастье быть нужным

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2