Искатели необычайных автографов или Странствия, приключения и беседы двух филоматиков
Шрифт:
— Короче говоря, он не математик, — мрачно заключает Ферма.
— И это самый большой его недостаток, — торопливо подхватывает Блез. — Подумать только, мне так и не удалось убедить его, что математическая линия делима до бесконечности!
— Да-а-а! Это уж из рук вон. И такой-то человек стоит у колыбели науки со столь удивительным будущим! Впрочем, серьезное в жизни нередко начинается с пустяков. Иной раз даже с игры…
— Теория вероятностей, например, — улыбается Паскаль. — Так я с некоторых пор называю наше новое увлечение, которое прежде именовал математикой случайного.
— Теория вероятностей, — со вкусом повторяет ферма. — Неплохо! Вы мастер
— Игрок!
Ферма разражается оглушительным хохотом. Браво! Это называется попасть в цель с первого выстрела! Надо, однако, надеяться, что игрок де Мере не приохотил математика Паскаля к азартным играм.
Последнее замечание, проникнутое, несмотря на шутливо-беспечный тон, неподдельной тревогой, живо напоминает Блезу о покойном отце, чьей любовной опеки ему так не хватает. На какую-то секунду у него перехватывает дыхание, но он тотчас справляется с собой, и ответ его звучит почти весело. Нет, нет. Ферма напрасно беспокоится! Если в нем и проснулся азарт, то не к самой игре, а к поискам связанных с ней математических закономерностей. Как ни странно, на ту же удочку попался и сам шевалье, что весьма пошло ему на пользу: он хоть и с грехом пополам, а справился все же с одной из двух задач, о которых Блез имел уже счастье писать в Тулузу, — с той, где говорится об одновременном выпадении двух шестерок. Забавнее всего, что, решая эту задачу двумя разными способами, де Мере получил и два разных ответа. Один из них утверждает, что необходимо произвести двадцать пять бросков, второй — что хватит и двадцати четырех.
— И который же из двух ему больше нравится? — иронизирует Ферма.
— Представьте себе, второй! И так как шевалье не в состоянии обнаружить ошибку ни в одном из своих решений, то он бранит теперь математику при каждом удобном случае, называя ее наукой неточной.
Ферма снисходительно посмеивается. Бедняга де Мере! Ему бы не в математике усомниться, а в своей собственной логике.
— В том-то и дело, что логике он доверяет куда меньше, чем игорной практике, — возражает Паскаль. — А она якобы убеждает его, что наилучшее число бросков — двадцать четыре, так как после двадцати четырех бросков он-де выигрывал чаще всего.
— Чаще всего?! Что за чепуха! Чтобы вывести подобную закономерность опытным путем, надо не отходить от игорного стола годами. Я вижу, ваш де Мере изрядно привирает. Уж не охотник ли он?
— Что делать, — разводит руками Блез, — он никак не желает понять, что практические результаты игры не должны да и не могут точно совпадать с математически вычисленной вероятностью. Ведь для того, чтобы они совпали, иначе, для того, чтобы отношение числа выигранных партий к общему числу сыгранных (то, что можно назвать относительной частотой удач) постепенно приблизилось к нашей, математически вычисленной, теоретической вероятности, надо сыграть огромное число партий. Потому что теоретическая вероятность — это всего лишь идеальный и практически недостижимый предел, к которому стремится относительная частота удач. И расхождение между ними будет тем меньше, чем больше число сыгранных партий.
— Да, тут вступают в игру большие числа, — говорит Ферма, — а у них, безусловно, свои законы.
— С удовольствием замечаю, что большие числа интересуют вас не меньше, чем меня, — оживляется Паскаль. — Любопытнейшая, но, к сожалению, мало исследованная область! Возьмем простейшую игру в монетку. Логика подсказывает,
— …если только у вас хватит терпения да и времени довести такой опыт до конца, — подтрунивает Ферма. — Но шутки в сторону! Закономерности больших чисел сыграют когда-нибудь немалую роль в жизни человечества. И, уж конечно, не потому, что с их помощью легче выиграть в монетку.
Паскаль лукаво и предостерегающе поднимает палец.
— Не вздумайте объяснять это шевалье де Мере: все равно не поймет.
— Где там! — смеется Ферма. — Это не для него. Так же как задача о разделении ставок. Ведь он, если не ошибаюсь, так и не решил ее?
— Насколько мне известно, нет.
— Зато это сделали мы с вами. И, в отличие от де Мере, получили один ответ…
— …несмотря на то, что решали врозь и каждый своим способом.
— По этому поводу вы изволили заметить в последнем вашем письме, что истина везде одна: и в Тулузе, и в Париже, — напоминает Ферма. — Еще одно точное определение! Вы чеканите словесные формулы с тем же совершенством, что и математические. Не удивлюсь, если в один прекрасный день мне скажут, что вы стали писателем.
Бледные щеки Паскаля розовеют: похвала не оставляет его равнодушным. И все же… Вряд ли он отважится когда-нибудь взяться за перо!
— Как знать, как знать, — загадочно посмеивается Ферма. — Жизнь иной раз делает такие неожиданные зигзаги…
— Я вижу, размышления о случайностях настроили вас на философский лад.
— Вполне естественно. На мой взгляд, нет на свете науки более философской, чем наука о случайностях. Ведь она связана с самыми главными пружинами бытия!
— Вы хотите сказать, что миром правит случай?
— Конечно. Хоть это и не означает, что в нем царит хаос. Да ведь и случайность, как подумаешь, тоже проявление некой закономерности…
Паскаль вскакивает со своего диванчика и горячо пожимает руку Ферма. Давно у него не было такого счастливого вечера! Слышать от друга то, что приходит в голову тебе самому, — разве это не высшее счастье? Недавно, перечитывая Марка Аврелия, он, Блез, позволил себе не согласиться с этим древнеримским мудрецом, который никак не мог решить, что же господствует на земле — закономерность или случай? Но надо ли задаваться таким вопросом? Разве одно исключает другое? И разве не очевидно, что случай и закономерность сосуществуют в этом мире? Мало того: они неотделимы. Потому что закономерности возникают непосредственно из хаоса случайностей, подчиняясь неким таинственным, пока еще не изученным законам…
— Да, да, — поддакивает Ферма. — Именно так. И вот вам красноречивый пример. В последнее время я, как и вы, упорно размышляю о вопросах, связанных с нашей новой наукой. Но когда ищешь одно, нередко под руку подворачивается другое.
— Что же подвернулось вам?
Ферма таинственно прижимает палец к губам.
— Сейчас узнаете!
ВЕЛИКИЙ ТРЕУГОЛЬНИК ПАСКАЛЯ
Он встает, выходит из комнаты и тут же возвращается, держа в руках большую корзину.