Чтение онлайн

на главную

Жанры

Искусственный спутник Земли
Шрифт:

Ракета Циолковского — управляемый космический корабль. Регулируя скорость вытекания газов, можно изменять скорость полета ракеты. Если же в струе выходящих газов установить плоские рули из графита, то отражение этими рулями газовой струи приведет к изменению направления полета ракеты.

Таково устройство ракеты Циолковского. Способен ли, однако, такой космический корабль развить нужную скорость? Артиллерийский снаряд не может лететь быстрее, чем расширяются газы в стволе орудия. Иначе ведет себя ракета.

Теоретически говоря, ее скорость может быть сколь угодно большой. Увеличивая неограниченно отношение

и принимая скорость с
постоянной, мы можем сделать скорость ? любой. Так, например, считая с равной 4
, мы, при отношении
=100, получим, по формуле Циолковского, ? примерно равным 8,5
, а увеличив отношение
до 10 000, найдем, что ? возросло до 36,8
.

Практически же дело обстоит сложнее. В приведенных примерах вес ракеты без топлива составляет 0,01 или даже 0,0001 долю ее веса с топливом. Это означает, что полезному грузу, в частности пассажирам, в таком космическом корабле будет отведена лишь ничтожная его часть.

Если вспомнить, что в цистерне с керосином ее содержимое всего только в 13 раз тяжелее тары и даже в пчелиной ячейке тонкая восковая оболочка в 60 раз легче меда, то нереальность приведенных примеров становится очевидной.

В современных ракетных двигателях скорости истечения газовых струй достигают 2500 метров в секунду. Если принять, что с=2500

, то для достижения «скорости отрыва» необходимо, чтобы отношение
для космического корабля было равным 90, т. е. чтобы на долю пассажиров пришлась всего 1/90 часть веса ракеты. Ясно, что и такой корабль неосуществим.

Есть ли выход из этих затруднений, достижимы ли вообще космические скорости?

Одно из возможных решений — увеличение скорости вытекания газов из ракеты (с). Для этого необходимо увеличить теплотворную способность топлива, его калорийность, т. е. количество теплоты, выделяющееся при сгорании 1 кг топлива.

В настоящее время в реактивных двигателях в качестве горючего употребляются почти исключительно углеводороды и спирты, а в качестве окислителя используется кислород воздуха. Однако скорости истечения в таких двигателях еще сравнительно невелики. Так, например, в двигателях реактивных самолетов, работающих на бензине, скорость истечения продуктов горения не превышает 700–800

. Даже если в качестве окислителя применять жидкий кислород, то и тогда скорость истечения не превысит 2500
. Это — рекорд, который пока достигнут в данном вопросе.

В недалеком будущем удастся, по-видимому, использовать более калорийные топлива и тем самым получить большие скорости истечения.

Очень калорийным горючим является жидкий

водород. При сжигании в кислороде он может обеспечить скорость истечения до 3,75
. К сожалению, водород обладает большим недостатком — его удельный вес очень мал. Так как жидкий водород в 15 раз легче воды, то для размещения этого топлива на космическом корабле потребуются огромные топливные баки, что сильно утяжелит ракету и, следовательно, затруднит ее полет. Вот почему жидкий водород вряд ли будет использован при межпланетных перелетах.

Гораздо выгоднее в этом отношении некоторые химические соединения водорода. Многого можно ожидать от металлических горючих, например, порошков алюминия, магния и других. При соединении с кислородом они выделяют весьма большие количества теплоты.

Есть окислитель еще более активный, чем даже сам кислород, — это фтор, химический элемент из так называемой группы галогенов. Любопытно, что фтор легко окисляет все вещества, включая кислород!

Фтор очень ядовит — в этом одно из препятствий к его использованию в межпланетных кораблях. И все-таки надо полагать, что фтористые соединения, в частности фтористый кислород, будут использованы как окислители. Найдет себе применение и озон, по своим окислительным свойствам также превосходящий кислород.

Подсчеты показывают, что применение наилучших из возможных химических топлив способно удвоить существующие скорости истечения, доведя их до 4–4,5

. Таков предел возможностей химического топлива.

Будем считать, что с=4,5

. Тогда по формуле Циолковского легко получить, что для скорости отрыва отношение
должно быть близко к 12. Как видите, выигрыш получился значительный, хотя конструктивные затруднения по существу сохранились.

В дальнейшем мы рассмотрим некоторые принципиально новые возможности решения проблемы, например, использование атомной энергии для реактивных двигателей, а сейчас остановимся на одном замечательном изобретении Циолковского, которое позволяет иным путем приблизиться к космическим скоростям.

Речь пойдет о так называемых составных ракетах.

Когда в прошлом полярные исследователи стремились достичь полюса, они применяли метод, несколько напоминающий идею составных ракет. В путь отправлялась большая группа путешественников, везущая с собой значительные запасы продовольствия. На определенных расстояниях друг от друга организовывались склады с таким количеством продовольствия, которое было необходимо для обратного возвращения. С каждой стоянки часть экспедиции возвращалась назад и лишь оставшаяся в конце концов небольшая группа исследователей штурмовала полюс. Так, например, были организованы антарктические экспедиции Амундсена и Роберта Скотта.

Представим себе теперь составную ракету Циолковского, состоящую из двух или нескольких звеньев, т. е. ракет, как бы вложенных друг в друга (рис. 10).

Рис. 10. Составная трехступенчатая ракета.

Рассмотрим, как летит двухступенчатая ракета.

При взлете с Земли действует только первая, «земная» ракета. Когда ее топливо израсходуется, земная ракета автоматически отделяется от второй «космической» ракеты, двигатель которой как раз в этот момент и начинает свою работу. «Земная» ракета спускается на Землю, а «космическая» продолжает полет, набирая нужную скорость.

Поделиться:
Популярные книги

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Неудержимый. Книга XIV

Боярский Андрей
14. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIV

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Подаренная чёрному дракону

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.07
рейтинг книги
Подаренная чёрному дракону

Я Гордый часть 2

Машуков Тимур
2. Стальные яйца
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я Гордый часть 2

Бальмануг. Невеста

Лашина Полина
5. Мир Десяти
Фантастика:
юмористическое фэнтези
5.00
рейтинг книги
Бальмануг. Невеста

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Сонный лекарь 6

Голд Джон
6. Сонный лекарь
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 6

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила