Истина и красота. Всемирная история симметрии.
Шрифт:
Хотя доказательство [Абеля] в итоге является верным, оно представлено в настолько сложном и неясном виде, что не получило всеобщего признания. За много лет до того Руффини… рассматривал тот же вопрос еще более туманным способом… Размышляя о работах этих двух математиков, мы пришли к доказательству, представляющемуся настолько строгим, что оно устраняет все сомнения касательно этой важной части теории уравнений.
Единственной остающейся задачей Античности была квадратура круга, сводящаяся к построению отрезка, длина которого была бы точно равна . Доказать невозможность такого построения оказалось намного сложнее. Почему? Дело не в том, что у числа минимальный многочлен неправильной степени, а в том, что, как оказалось, у него вообще нет минимального многочлена — нет такого полиномиального
Математики девятнадцатого столетия осознавали, что различие между рациональными и иррациональными числами можно было с пользой для себя сделать более тонким. Имелись иррациональные числа различных видов. Относительно «ручные» иррациональности, подобные 2, нельзя точно выразить в виде дроби (т.е. записать как рациональное число), но их можно представить, используярациональные числа. Они удовлетворяют уравнениям, коэффициенты которых — рациональные числа; в случае числа 2 это уравнение x 2– 2 = 0. Про такие числа говорят, что они алгебраические. Но математики осознали, что в принципе могут существовать иррациональные числа, не являющиеся алгебраическими, связь которых с рациональными числами намного менее прямая, чем для алгебраических чисел. Они во всем выходили за границы царства рациональности.
Самый первый вопрос состоял в том, действительно ли такие «трансцендентные» числа существуют [31] ? Греки полагали, что всечисла могут быть рациональными, пока Гиппас не развеял эти иллюзии, а Пифагор, как говорят, пришел в такое негодование, что велел выбросить за борт гонца, принесшего эту весть. (Более вероятно все же, что Гиппаса просто изгнали из пифагорейской школы.) Математикам девятнадцатого столетия было известно, что всякая вера в то, что все числа являются алгебраическими, равным образом должна была привести к трагедии, но в данном случае они довольно долго не могли найти своего Гиппаса. Все, что требовалось, — это доказать, что некоторое конкретное вещественное число — разумным кандидатом было число —не является алгебраическим. Но уже достаточно трудно доказать, что некоторое число — например, —иррационально, для чего надо убедиться в том, что не существует ни одной пары целых чисел, которая давала бы в результате деления одного числа на другое. Чтобы доказать, что некоторое число не является алгебраическим, надо заменить эти гипотетические целые числа на все возможные уравнения любой степени, а затем прийти к противоречию. Дело сильно запутывается.
31
Название «трансцендентные» указывает на вещи, которые «выходят за пределы», «преступают границы», «не поддаются включению». (Примеч. перев.)
Первый значительный прогресс был достигнут немецким математиком и астрономом Иоганном Ламбертом в 1768 году. В работе о трансцендентных числах он доказал, что иррационально, и его метод проложил дорогу всем последующим исследователям. Ламберт существенно использовал идеи из анализа, в особенности концепцию интеграла. (Интеграл заданной функции представляет собой функцию, скорость изменения которой есть исходная функция.) Исходя из предположения, что в точности равняется некоторой дроби, Ламберт предложил вычислить достаточно сложный интеграл [32] изобретенный им специально для этой цели, куда входили не только многочлены, но и тригонометрические функции. Имеются два разных способа вычисления этого интеграла. Один из них дает в ответе нуль. Другой показывает, что ответ неравен нулю.
32
Что означает «интеграл от достаточно сложной функции». (Примеч. перев.)
Если — не дробь, то ни один из способов вычисления не применим, так что никаких проблем не возникает. Но если — дробь, то, следовательно, нуль равен чему-то, что нулю не равно. Приехали.
Подробности доказательства Ламберта носят технический характер, но способ, которым оно работает, оказывается очень информативным. Для начала ему пришлось соотнести с чем-то более простым, и на помощь в этом деле пришла тригонометрия. Следующая задача состояла в том, чтобы сконструировать такую ситуацию, в которой при рациональном случилось бы нечто особенное. Именно тут в дело вступили многочлены — при поддержке умной мысли о том, что надо использовать некоторый интеграл. Затем доказательство свелось к сравнению двух различных методов вычисления этого интеграла и демонстрации того факта, что эти методы приводят к разным ответам. Это достаточно техническая и громоздкая часть доказательства, однако для специалиста она не представляет никаких сложностей.
Доказательство Ламберта было значительным шагом вперед. Однако же великое множество иррациональных чисел построить можно; наиболее очевидным примером такого числа является 2 — диагональ единичного квадрата. Таким образом, доказательство иррациональности числа не означало, что построить его нельзя. Оно означало лишь, что бессмысленно было пытаться точно выразить в виде дроби, но это совсем другая постановка вопроса.
Математики здесь встретились с необычной дилеммой. Они научились проводить различие между алгебраическими и трансцендентными числами и полагали, что это важно. Но они все еще не знали, существует ли хоть какое-нибудь трансцендентное число. В практическом плане предполагаемое различие могло оказаться бессодержательным.
Потребовалось время. Существование трансцендентных чисел было доказано лишь в 1844 году. Решающего прорыва в этой области добился Лиувилль. Ранее он извлек на свет божий из кипы академического хлама работы Галуа, а теперь сумел изобрести трансцендентное число. Оно выглядело следующим образом:
0,110001000000000000000001000…, —
где все более и более длинные последовательности нулей разделены отдельными единицами. Важное обстоятельство состоит в том, что количество нулей в этих последовательностях должно очень быстро возрастать.
Числа такого типа являются «почти» рациональными. Для них существуют необычайно точные рациональные приближения — главным образом из-за наличия длинных отрезков, состоящих из нулей. Например, в приведенном выше числе более длинный из таких отрезков состоит из 17 последовательных нулей, а это означает, что число, которое стоит перед этим, — то есть 0,110001 — служит намного лучшим приближением к числу Лиувилля, чем обычно получается для выбранной наугад десятичной дроби. Конечно, 0,110001, как и любая конечная десятичная дробь, рациональна — она равна 110001/ 1000000. Вместо точности в 6 десятичных знаков она дает точность в 23 десятичных знака. Следующая ненулевая цифра — это 1 на 24-м месте.
Лиувилль понял, что алгебраические числа, не являющиеся при этом рациональными, всегда довольно плохо приближаются рациональными. Дело не только в том, что такие числа иррациональны; для получения хорошего рационального приближения приходится использовать очень большие числа, чтобы записать близкую по величине дробь. Поэтому Лиувилль специально определил число, обладающее исключительно хорошими рациональными приближениями — слишком хорошими для того, чтобы это число могло быть алгебраическим. Поэтому оно должно было быть трансцендентным.
Единственное, за что можно критиковать эту умную идею, — это то, что число Лиувилля является очень искусственным. Не видно его связи с чем бы то ни было еще в математике. Оно взято из воздуха с единственной целью получить очень хорошие приближения рациональными числами. Оно было бы никому не интересно, если бы не это его единственное замечательное свойство: про него удается доказать, что оно трансцендентно. Математики, таким образом, убедились в существовании трансцендентных чисел.
Оставался вопрос, существуют ли интересныетрансцендентные числа, но по крайней мере теория трансцендентных чисел приобрела смысл. Дело было за тем, чтобы наполнить ее интереснымсмыслом. Прежде всего, трансцендентно ли ? Если да, то вопрос с древней задачей о квадратуре круга решается нокаутом. Все числа, допускающие построение, являются алгебраическими, следовательно, трансцендентные построить невозможно. Если трансцендентно, то квадратура круга невозможна.