Истина и красота. Всемирная история симметрии.
Шрифт:
Число 17 простое, что для начала уже неплохо. Выполненный Гауссом анализ, переформулированный в более современных терминах, основан на том факте, что решения уравнения x 17– 1 = 0 образуют вершины правильного 17-угольника на комплексной плоскости. У этого уравнения имеется один очевидный корень x = 1. Остальные 16 — это корни многочлена 16-й степени, и можно показать, что этот многочлен есть x 16 + x 15 + x 14 + … + x 2 + x + 1. 17-угольник строится путем решения цепочки квадратных уравнений, а это оказывается возможным потому, что 16 есть степень
Аналогично в более общем случае аргументы того же типа показывают, что когда p— нечетное простое число, правильный p-угольник допускает построение, если и только если p – 1 есть степень числа 2. Такие нечетные простые числа называются (простыми) числами Ферма, потому что Ферма первым взялся их исследовать. Грекам было известно о построении правильного 3-угольника и правильного 5-угольника. Заметим, что 3 - 1 = 2 и 5 - 1 = 4 суть степени числа 2. Результаты греков, таким образом, согласуются с критерием Гаусса, а 3 и 5 — первые два из чисел Ферма. С другой стороны, 7 - 1 = 6, что не есть степень двойки, так что правильный 7-угольник не допускает построения циркулем и линейкой.
Затратив еще немного труда, можно получить характеризацию Гаусса: правильный n-угольник допускает построение, если, и только если, nявляется степенью двойки или же степенью двойки, умноженной на различныепростые числа Ферма.
Остается выяснить, каковы же числа Ферма. Следующим после 3 и 5 идет Гауссово 17. Следующее — 257, а за ним — уже довольно большое число 65 537. Это единственные известные простые числа Ферма. Никто не доказал, что дальнейшие числа Ферма существуют — но никто не доказал и того, что их нет. Насколько нам известно на данный момент, может существовать абсолютно гигантское простое число Ферма, пока не известное человечеству. Согласно знаниям, имеющимся на сегодняшний день, это число составляет по меньшей мере 2 33554432 + 1, и этот монстр и в самом деле может оказаться следующим простым числом Ферма. (Показатель степени 33 554 432 сам есть степень числа 2, а именно 225. Все числа Ферма на единицу превосходят двойку, возведенную в степень, являющуюся степенью двойки.) Это число имеет более десяти миллионов знаков. Даже после сделанных Гауссом великих открытий мы все равно не знаем в точности, какие именно правильные многоугольники можно построить, но единственным пробелом в наших знаниях остается вопрос о существовании очень больших чисел Ферма.
Гаусс доказал, что правильный 17-угольник допускает построение, но в действительности не дал описания самого построения, хотя и заметил, что основной шаг состоит в построении отрезка, длина которого равна
Поскольку квадратные корни можно построить всегда, искомое построение скрыто в этом замечательном числе. Первое явное построение осуществил Ульрих фон Югэнен в 1803 году. В 1893 году Герберт Уильям Ричмонд нашел более простой вариант [34] .
34
На анимированное построение правильного 17-угольника можно посмотреть по адресу:
(Примеч. перев.)
В 1832 году Ф. Ж. Ришло опубликовал ряд статей о построении правильного 257-угольника под заголовком De resolutione algebraica aequationis x 257= 1, sive de divisione circuli per bisectionem anguli septies repetitam in partes 257 inter se aequales commentatio coronata,который сам уже производит не меньшее впечатление, чем число сторон его многоугольника.
Имеется апокрифическая байка [35] о том, как сверхстарательному аспиранту было предложено построить в своей диссертации 65 537-угольник, после чего тот появился вновь лишь двадцать лет спустя. Реальность почти столь же курьезна: Ж. Эрмес из Лингенского университета посвятил этой задаче десять лет, закончив ее в 1894 году; его неопубликованная работа хранится в Геттингенском университете. К сожалению, Джон Хортон Конуэй — быть может, единственный из математиков нашего времени, когда-либо взглянувший на эти документы, — сомневается, что там все верно.
35
Вероятно, придумана Дж. Литлвудом. (Примеч. перев.)
Глава 9
Пьяный вандал
Уильям Роуэн Гамильтон [36] был величайшим математиком из всех, когда-либо рожденных Ирландией. Он появился на свет, когда часы отбивали полночь с 3 на 4 августа 1805 года, и впоследствии так и не смог окончательно решить, какой же из дней считать днем своего рождения. По большей части он склонялся к 3-му, но на его надгробии указана дата «4 августа», потому что ближе к концу жизни он перешел на эту дату по сентиментальным причинам. Он был блестящим лингвистом, математическим гением и алкоголиком. Он задался целью изобрести алгебру в размерности три, но вместо этого во вспышке озарения, которое вылилось в акт вандализма по отношению к мосту, реализовал то, к чему стремился, в размерности четыре. Он навсегда изменил взгляды человечества на алгебру, пространство и время.
36
Ничего не поделаешь; однофамильцем нашего Гамильтона является, например, Л. Хэмилтон — британский обладатель чемпионского титула в гонках класса «Формула 1» — но традиционное написание есть традиционное написание (плюс к тому в физике и математике укоренилось немало производных от имени Гамильтона, например, «гамильтониан»). Других примеров традиционного русского написания в этой книге немало. Скажем, все «простые» французы по имени Charles — Шарли, но короли, носящие то жеимя, — Карлы; ИсаакНьютон, но АйзекАзимов и т.д. (Примеч. перев.)
Уильям родился в богатой семье — он был третьим сыном Арчибальда Гамильтона, юриста, голова которого была устроена подходящим для бизнеса образом. У Уильяма была также сестра по имени Элиза. Отец любил пропустить пару-тройку стаканчиков, поэтому некоторое время с ним приятно было находиться в одной компании, однако ближе к вечеру дело поворачивалось обратной стороной медали. Арчибальд ясно выражал свои мысли, был умен и религиозен, и его младший сын унаследовал все его отличительные черты, включая пристрастие к алкоголю. Мать Уильяма Сара Хаттон в умственном отношении не уступала мужу — она происходила из семьи, несшей на себе знаки интеллектуального отличия, однако ее влияние на маленького Уильяма ограничилось по большей части передачей ему своих генов — в трехлетнем возрасте мальчик был отдан в обучение к дяде Джеймсу. Джеймс был викарием и превосходным лингвистом, и его интересы определили основные направления образования Уильяма.
Результаты последовали впечатляющие, хотя и на довольно узком поприще. В пятилетнем возрасте Уильям свободно владел греческим, латынью и древнееврейским. К восьми годам он говорил по-французски и по-итальянски. Два года спустя к списку добавились арабский и санскрит; позднее — персидский, сирийский, хинди, малайский, маратхи и бенгальский. Попытка овладеть китайским провалилась из-за отсутствия подходящих текстов. Джеймс жаловался, что ему «стоило немалых денег поддерживать его из Лондона, но, похоже, деньги были потрачены не зря». Математик и квазиисторик Эрик Темпл Белл («квази», потому что он никогда не позволял неудобному факту испортить хорошую историю) вопрошал: «Для чеговсе это было нужно?»
Однако естественным наукам и математике повезло. Уильям, совсем уже было собравшийся посвятить свою жизнь изучению как можно большего числа существующих в мире языков, познакомился с американским вундеркиндом по имени Зира Колберн. Это был один из тех странных людей, чья голова работает как карманный калькулятор; он обладал способностью быстро и точно выполнять вычисления. Если бы вы спросили Колберна, чему равен кубический корень из 1 860 867, он ответил бы — 123, не моргнув глазом.
Такие способности — не то же самое, что склонность к математике, подобно тому как способность к грамотному письму не сделает из вас хорошего романиста. За исключением Гаусса, в записных книжках и рукописях которого остались многочисленные объемные вычисления, очень мало кто из великих математиков был выдающимся вычислителем. Большинство были просто толковыми вычислителями, каковыми в то время и требовалось быть, но в среднем не более выдающимися, чем обычный квалифицированный бухгалтер. Даже в наши дни компьютеры не полностью вытеснили вычисления ручкой на бумаге или в уме; часто можно получить хорошее представление о математической задаче, делая вычисления руками и следя за тем, как на бумаге выстраиваются символы. Но, разумеется, при наличии хорошей программы (по большей части созданной математиками) кто угодно сможет после часа тренировки проводить вычисления на уровне, которому возможности Колберна и в подметки не годятся.