История атомной бомбы
Шрифт:
На седьмом этаже Института физики Колумбийского университета царит business as usual. Тому, кто хочет в эти апрельские дни 1940 года поговорить с Энрико Ферми, придется — как важному испанскому посетителю несколько лет тому назад в Риме — рассчитывать, что, скорее всего, он увидит вначале его облысевший затылок, его развевающийся халат и мелькающие каблуки его башмаков. Ферми и в Нью-Йорке считает себя лучшим атлетом в своей группе. И поэтому снова объявил тридцатиметровые спурты вдоль коридора к счетчику Гейгера своим начальническим делом. После того как из военного бюджета было выделено шесть тысяч долларов, в лабораторию поступило уже несколько ящиков с графитовыми кирпичами — всего четыре тонны. Лео Силард до последнего сражался с господами из «Union Carbon and Carbide Company» за приемлемые цены. Ферми и его сотрудники укладывают графитовые кирпичи в черные колонны
У подножия графитового котла находится испытанный радоново-бериллиевый источник, вставленный в парафиновый блок, тогда как зазоры в графите задуманы для фольги из родия, которая внутри котла должна улавливать нейтроны и таким образом отмечать глубину их проникновения. Чем глубже и дальше нейтроны проникают в графит, тем лучше это вещество подходит в качестве замедлителя для будущего реактора. Поскольку родий имеет период полураспада в сорок четыре секунды, каждое действие должно быть идеально отработанным. После одной минуты облучения Андерсон по отмашке удаляет источник нейтронов, а Ферми с секундомером в руке хватает фольгу. У него есть десять секунд на то, чтобы добежать до кабинета, и еще пять секунд на то, чтобы поднести фольгу к счетчику Гейгера и захлопнуть свинцовую крышку до того, как прибор заработает. «Я до сих пор так и вижу, как с первыми щелчками счетчика в его глазах вспыхивают искры, — вспоминает Андерсон. — В такт этому ритму он кивает головой. Феномен радиоактивности всякий раз заново приводит его в восторг».
«Еврейский сундук» Пауля Хартека — это сколоченный из досок контейнер высотой, шириной и глубиной в два метра. Он стоит на виду у любого ротозея между декоративными кустами и клинкерной обшивкой стены Института физической химии на Юнгиусштрассе в Гамбурге. В этом совершенно секретном котле под открытым небом размещаются блоки сухого льда. Порошок оксида урана Хартек и его сотрудники засыпают в пять вертикальных шахт, оставленных среди льда. Стенки шахт облицованы фанерой. Источник нейтронов и измерительные зонды располагаются у средней шахты. В эту последнюю неделю мая сбываются все худшие ожидания Хартека. Измерения разочаровывают. Размножения нейтронов, которое он оценивал по предварительным расчетам в двадцать пять процентов, так и не зафиксировано. Сто восемьдесят пять килограммов «препарата 38» попросту не хватило, чтобы провести полноценный эксперимент и добиться разумного результата. В начале июня его пятнадцать тонн сухого льда растаяли, так что ему пришлось с огорчением прекратить опыт.
В это же время сбывается и кошмар трех венгров в Америке: вермахт в результате блицкрига вступает в Бельгию и действительно захватывает склады фирмы «Union Mini`ere du Haut Katanga», где хранятся три тысячи пятьсот тонн высокоценных соединений урана из Бельгийского Конго. Первый приказ новых господ требует немедленной поставки шестидесяти тонн на заводы «Ауэр» в Берлин. Паулю Хартеку военная добыча из Бельгии уже не пригодится. Пока руда из Конго будет переработана в «препарат 38», пройдет слишком много времени. Кроме того, теперь очередь на получение продукта у Вернера Гейзенберга. В ближайшее время все старые и новые запасы урана будут направляться исключительно его группе в Берлин и Лейпциг. На взгляд Дибнера, Хартек уже имел свой шанс и не смог им воспользоваться. Его идея применения сухого льда в качестве высокочистого замедлителя для уранового котла больше не получает поддержки. Будь этого вожделенного оксида урана в распоряжении Хартека в мае 1940 года на несколько центнеров больше, его измерения, возможно, оказались бы такими обнадеживающими, что он занял бы отличную позицию в гонке за первый самовозбуждающийся урановый реактор — не только внутри «уранового клуба», но даже и в конкуренции с Ферми в Нью-Йорке.
В то время как Энрико Ферми в своей нобелевской речи 1938 года еще украшал предполагаемые трансураны поэтическими названиями, Отто Ган и Фриц Штрассман питали к объектам своей любознательности скорее прозаические чувства. В Берлине трансураны нумеровали просто по ядерному заряду: 93, 94, 95, 96. Правда, оба радиохимика были в те волнующие декабрьские дни на более верном пути, уже провидя существование этих странных элементов как историческое заблуждение. Трансураны оказались всего лишь обломками расщепления ядер. В конце мая 1940 года, когда сухой лед Хартека начинает таять, а в Берлин отправляются первые товарные вагоны с бельгийским ураном, возрождается идея искусственных элементов, которые тяжелее урана. И на сей раз их теория стоит на прочном фундаменте. По иронии судьбы, открытие первого настоящего трансуранового элемента происходит благодаря сомнительному «двадцатитрехминутному телу», тщательно проанализировать которое Лиза Мейтнер просила Гана и Штрассмана еще несколько лет
Этот первый настоящий трансуран распадается, в свою очередь, с периодом полураспада в тридцать два часа на следующий новый элемент с числом заряда ядра 94. К счастью, с 1930 года известно о существовании еще одной планеты в Солнечной системе — Плутона, — которая тоже пока что не приведена в связь с каким-нибудь химическим элементом. Второй трансуран, производный от первого, Макмиллан и его коллега Гленн Сиборг два года спустя так и называют — плутоний. Изотоп плутония имеет период полураспада двадцать четыре тысячи лет. Хотя в мае 1940 года для более тщательного изучения плутония еще нет его достаточного количества, из прошлогодней теории Бора—Уилера о расщеплении ядра можно сделать вывод, который приводит немецких и американских исследователей реактора в наэлектризованное состояние: расщеплению поддается не только редкий изотоп урана с 235 ядерными частицами, но и трансурановый элемент 94 под названием плутоний.
Преобладающий в природном уране и до сих пор считавшийся неактивным изотоп с 238 ядерными частицами порождает, таким образом—через свою короткоживущую «дочку» нептуний — в третьем поколении еще один — новый — взрывчатый элемент, который годится в качестве ядерной взрывчатки. Значит, при успешном запуске цепной реакции не позднее чем через двое с половиной суток в совершенно нормальном реакторе возникнет естественным способом расщепляемый плутоний. Этот эксперимент влечет за собой один удивительный вывод: урановая машина, работающая даже исключительно в целях производства электричества, поневоле размножает взрывчатое вещество для бомб — плутоний.
В Германии исследованием трансуранов занимаются в первую очередь Карл Фридрих фон Вайцзеккер и его коллега Фриц Хоутерманс. Статья Макмиллана появляется в журнале «Physical Review». Английские атомщики в ужасе: теперь его работа может быть прочитана и в Германии. Они бьют тревогу своим американским коллегам, и уже скоро высшие инстанции налагают запрет на публикации о будущих урановых исследованиях. Статье Макмиллана суждено было стать последней в своем роде в военное время.
В июле 1940 года Вайцзеккер еще может опереться на эту публикацию и предсказать, что плутоний поддается расщеплению легче, чем уран-235. И что химическое отделение нового элемента от урана не связано с большими трудностями. Поскольку плутоний химически отличается от урана, в то время как уран-235 и уран-238 можно разделить, по-видимому, только приложив неодолимую силу циклотрона. Но во всей Германии пока что не построено ни одного ускорителя частиц, поэтому альтернатива плутония видится более торной дорогой к атомной бомбе. Вайцзеккер сводит все свои знания в один отчет Курту Дибнеру. Независимо от американцев и в то же самое время доказательство существования элемента-93 удается и специалисту в области физической химии Курту Штарке в институте Отто Гана. Что и послужило Гану поводом лишний раз указать в отчете Управлению вооружений на «возможное применение трансуранов в качестве ядерной взрывчатки».
Летом 1939 года Отто Роберт Фриш поехал из Копенгагена в Бирмингем. Его пригласил Марк Олифант, руководитель Физического института Бирмингемского университета, занятый разработкой сверхсекретного радара. После того как началась война, Фриш больше не возвращается в Данию — из страха перед скорым вторжением немецкого вермахта. Олифант дает ему возможность работать в своем институте — для начала руководителем практических занятий студентов. Фришу не дают покоя нерешенные проблемы расщепления ядра. У него есть идея, как отделить уран-235 от урана-238 и без использования циклотрона. Клаус Клузиус, на тот момент профессор физической химии в Мюнхене и член «уранового клуба», в 1938 году разработал простой способ разделения. Длинная, вертикально стоящая трубка наполняется газообразным соединением элемента, изотопы которого нужно отделить друг от друга. Трубка нагревается с одного конца, и более легкие атомы собираются у теплого конца трубки, а более тяжелые — у холодного.