История электротехники
Шрифт:
Дальнейшее развитие преобразовательной техники показало перспективность и актуальность этих исследований. В послевоенные годы доля преобразовательной нагрузки в энергетическом балансе и ее влияние на работу энергосистемы возросли. Более жесткие требования национальных стандартов на качество энергии стало возможно выполнять лишь на основе схем с принудительной коммутацией и на основе схем с двухоперационными силовыми ключами. Помимо преобразователей, ведомых сетью, возросла роль автономных преобразователей. Среди них следует выделить две группы: автономные преобразователи для индукционного нагрева и трехфазные автономные инверторы для электропривода.
Инверторы с повышенной частотой (сотни —
Инверторы для электропривода интенсивно разрабатывались в 50-е годы. В эти годы в электроприводе стали очевидны как достоинства асинхронных двигателей, так и их принципиальное ограничение — необходимость изменения частоты питающей сети для регулирования скорости. В связи с этим большие надежды возлагались на трехфазные автономные инверторы с регулируемыми частотой и напряжением. Для асинхронного привода с глубоким регулированием характерно требование хорошего гармонического состава выходного напряжения. Принципы формирования трехфазного синусоидального напряжения методами широтно-импульсной модуляции потребовали разработки новых классов преобразователей, основанных на принудительной коммутации однооперационных вентилей.
11.2.2. УПРАВЛЯЕМЫЕ РТУТНЫЕ ПРЕОБРАЗОВАТЕЛИ
Важным качественным усовершенствованием ртутного выпрямителя стало появление управляющей сетки. Первоначальная (диодная) функция ртутных вентилей с повышением рабочих напряжений потребовала введения экранов, защищающих анод от интенсивной бомбардировки потоками ионов.
Развитие конструкции экрана и независимое управление его потенциалом позволило изменять момент возникновения дугового разряда на анод. Ртутный вентиль становится прибором с управляемым моментом отпирания. Первые публикации об исследованиях ртутных вентилей с сеточным управлением относятся к 1933–1935 гг. (М.М. Четверикова, Н.Н. Петухов, М.А. Асташев) [11.9, 11.10]. Они привлекли внимание к возможности регулирования напряжения и защиты агрегата в аварийных режимах. В 1935 г. появились первые работы по исследованию инверторного режима ионного преобразователя частоты (так стали называть управляемый преобразователь электрической энергии на основе дугового разряда в управляемом вентиле). Эти исследования связаны с именем И.Л. Каганова.
Расположение шести анодов по окружности вакуумного бака обусловило большие размеры, технологическую сложность обработки крышки на карусельных станках. Изоляция деталей осуществляется фарфоровыми кольцами с прокладками из вакуумной резины. Это дает дополнительные сложности при изготовлении, транспортировке, сборке выпрямителя с вакуумной двухступенчатой системой откачки. Сборка выпрямителей требует высокой степени чистоты, а следовательно, больших объемов помещения, оснащенного подъемным оборудованием. Наконец, помещение должно отвечать жестким требованиям по температуре, удалению ртути и ее паров. Все это повышало стоимость транспортировки, сборки, эксплуатации и ремонта ртутно-выпрямительного оборудования. Поэтому в дальнейшем процесс совершенствования ртутно-выпрямительных агрегатов шел по пути создания:
одноанодных вентилей, которые комплектовались в агрегаты по шесть штук для построения трехфазных систем «звезда — две обратные звезды с уравнительным реактором»;
неразборных безнасосных агрегатов, в которых вакуум создавался в процессе изготовления и поддерживался в течение всего времени эксплуатации благодаря тщательной предварительной
обработке деталей (обезгаживания) и проверке вакуумной плотности всех сварных соединений.
Разработанные комплекты одноанодных вентилей РМНВ200х6 и РМНВ500х6 (ртутный, металлический, насосный, с водяным охлаждением на токи соответственно 1200 и 3000 А) составили основу выпрямителей для электрической тяги и электрометаллургии в послевоенные годы (рис. 11.2).
На базе неразборных отпаянных (безнасосных) агрегатов с управляемыми выпрямителями оказалось возможным создание мощных реверсивных электроприводов постоянного тока. Преобразователь существенно упрощается, у него отсутствует вакуумная система; делаются успешные шаги к переходу от водяного охлаждения к воздушному. Таким образом, он становится конструктивно и функционально завершенным узлом регулируемой преобразовательной системы. На внешнем рынке лидирующее положение занимали фирмы «Westinghouse» (США), «Allis-Chalmers», ASEA и «Brown-Bowery», (Швейцария). Последние две ныне объединились в одну из крупных европейских фирм ABB.
Наряду с ртутными вентилями, в которых имеется постоянно горящая дуга возбуждения, получили развитие игнитроны — ртутные вентили, в которых катодное пятно возбуждается каждый период. Зажигание дуги производится путем пропускания импульса тока через опущенный в ртуть катода карборундовый полупроводниковый стержень — игнайтер (поджигатель) (рис. 11.3). Возникающий при этом высокий градиент потенциала в точке контакта поджигателя с ртутью инициирует возникновение дугового разряда при положительном аноде. Отсутствие постоянно горящей дуги возбуждения повышает вентильную прочность благодаря отсутствию плазмы в неработающем вентиле, дает возможность регулирования тока изменением угла запаздывания поджигающего импульса по отношению к моменту естественного отпирания.
Наиболее успешное применение игнитрона нашли в промышленных сварочных агрегатах для точечной и шовной сварки. Кроме того, предпринимались попытки решить с помощью игнитронов проблему тяговых выпрямителей электрифицированных железных дорог (токи 100–200 А на один анод, напряжение до 3 кВ, 1938–1942 гг.). Разработка преобразователей на основе игнитронов в нашей стране связана с именем Б.М. Шляпошникова. В 40-е годы игнитроны успешно использовались в установках для индукционного нагрева [11.22, 11.23].
Помимо уже упомянутых ионных приборов с дуговым разрядом — ртутных выпрямителей появилось обширное семейство маломощных ионных приборов, получивших широкое распространение в преобразовательной технике и автоматике.