Как NASA показало Америке Луну
Шрифт:
Люди, прочитавшие «Следы на Луне», нашли еще множество несоответствий в фотографиях NASA. Мне рассказывали, что после сканирования некоторых цветных фотографий фоновые пятна в определенных местах принимают другой оттенок, что характеризует «составную» фотографию, сделанную из снимков с разных типов пленок. Я не стал добавлять эти замечания к тексту, дабы не лишать читателя возможности самостоятельно найти дополнительные несоответствия.
Солнце взойдёт…
В октябре 1995 я решил исследовать фотографии Аполлонов на предмет длины теней и их соотношения с местоположением и углом возвышения Солнца в соответствующие дни и время.
Я пошел в местную библиотеку — проштудировать справочники и записать формулы, необходимые для измерения углов возвышения Солнца во время каждой из предполагаемых лунных посадок и взлетов. Точное время новолуния перед каждой из миссий «Аполлона» определит путь Луны с этого мгновения до посадки и взлета. Поскольку миссии исчислялись с момента пуска с Земли, мне нужно было знать точное время запуска, а также широту и долготу мест посадки на Луне.
С изумлением я обнаружил, что в источниках указаны разные данные о координатах и времени посадки. NASA, которое всегда кичилось своей пунктуальностью, не могло точно записать время и зафиксировать координаты! Для двух миссий время вообще не было указано, но мне удалось его вычислить с погрешностью в несколько часов. Я написал в NASA — мне было интересно, что они скажут по этому поводу, но на ответ я особо не рассчитывал: если NASA решит следовать выбранному пути, ответа мне не дождаться никогда. А пока суть да дело, я использовал те координаты и время, которые мне удалось найти.
Точные астрономические данные о времени новолуния перед каждой миссией я взял в соответствующем морском справочнике. Физико-химический справочник подсказал мне наклон полярной оси и орбиты Луны. Наклон оси составляет 1,537 град., а орбиты — 5,12 град. к плоскости эклиптики. Там же я нашел данные о периоде обращения Луны вокруг своей оси — 2 360 550 секунд, или 27,32 дней. Это означает, что за один земной день Луна проходит 13,176 град.
Ниже приведены данные по миссиям. В каждой таблице последние два столбца первой строки — это количество часов с момента запуска с Земли до прилунения и до обратного старта с Луны соответственно. Во второй строке указаны дата и время предшествовавшего запуску новолуния и количество дней и часов до прилунения и обратного старта соответственно. Третья строка показывает суммарное количество дней и часов от новолуния до старта, в четвертой строке — количество часов от новолуния до прилунения и обратного старта, а в пятой — количество часов оборота с момента новолуния.
Рис. 15. Слева: полнолуние, справа: новолуние
На рис. 15 слева показана полная Луна. Точно посередине находится нулевая долгота, которая всегда повернута к Земле. Таким образом, 180-я долгота в новолуние будет повернута к Солнцу. Справа изображена обратная сторона Луны в новолуние. Точка С является полюсом вращения. На рисунке изображено невозможное — диапазон долготы в 180 град. Точка А является местом посадки. Обратите внимание на две отметки на линии долготы: ШИР — широта, или угловое расстояния от точки А до экватора, и
Поскольку я могу лишь приблизительно оценить угол возвышения Солнца с точностью до нескольких градусов, а смещение на 5 град. означает разницу угла возвышения менее чем в Г, можно пренебречь осевым наклоном и всегда использовать лунный экватор в качестве одного из параметров геофизического положения Солнца. Без проникновения в архивы NASA (что было бы равносильно самоубийству с моей стороны) я не могу узнать точное время съемки, поэтому мне остается лишь анализировать фотографии, просчитав крайнее геофизическое положение Солнца на день и час каждой лунной посадки и взлета.
Сначала вычислим положение Солнца в момент прилунения Аполлона-11. В столбце «Прилунение» таблицы данных по миссиям мы находим, что посадка на Луне произошла через 6,5 дней после новолуния. Умножив 6,5 дней на скорость вращения 13,176 град. в день, получаем 85 град. Вычитаем 85 град. из 180 град. и получаем долготу положения Солнца — 95 град. ВД. Аналогичным образом я вычислил долготу положения Солнца для всех лунных посадок и взлетов, что отражено в таблице угловых расстояний.
Теперь необходимо найти угловое расстояние между точками положения Солнца и посадки на Луне. Оно равно: 95 град. (положение Солнца) — 23 град. (место посадки) = 72 град. Тот же процесс вычислений я использовал и для взлета: 81 град. (положение Солнца) — 23 град. = 58 град.
Ниже приведена таблица угловых расстояний для посадок и взлетов всех экспедиций Аполлонов. Необходимо пояснить, что если обе точки находятся в одной долготе, то значения вычитаются — на рис. 16 слева показана схема посадки Аполлона-11. Если же точки имеют противоположную долготу, то значения складываются — справа на рис. 16 изображена схема взлета Аполлона-12.
Рис. 16. Слева: пункт А Восток — пункт В Восток, справа: пункт А Запад — пункт В Восток
Рис. 17. Слева: прилунение Аполлона-11, справа: сферический треугольник
Соединив эти точки с полюсом (точка С) и с экватором, получаем обычный навигационный треугольник. Две его стороны а и b — это ДОП-ШИР(A) и ДОП-ШИР(B) соответственно, С — угол между двумя сторонами, а третья сторона с — расстояние между двумя точками. Теперь это сферический треугольник. Уравнение для решения сферических треугольников, когда известны две стороны и угол между ними, выглядит следующим образом:
cos с = cos a х cos b + (sin a x sin b x cos C).
Поскольку b всегда равно 90 град., a cos 90 град. = 0, то первую часть уравнения можно опустить. У нас осталось: cos с = sin a х sin b х х cos С. Но поскольку sin 90 град. = 1, можно опустить и sin b. Окончательная формула уравнения выглядит так:
cos с = sin a х cos С.
На рис. 17 справа я использовал схему, более наглядно демонстрирующую сферический треугольник применительно к нашему случаю.
с = acos (sin 89 град. x cos 72 град.).