Как победить свой возраст? Восемь уникальных способов, которые помогут достичь долголетия
Шрифт:
В микробных сообществах, относящихся к нормальной микрофлоре человека, эволюционно сформировались межклеточные и межвидовые сети, представляющие систему трофических [117] и энергетических взаимосвязей внутри кишечного микробиоценоза [118] . Практически ни один доступный биосубстрат не используется только в интересах одной видовой популяции микроорганизмов. Микробиота [119] кишечника представляет собой как бы отдельный орган человеческого организма. Обмен веществ человека обеспечивается работой ферментов, кодируемых не только его геномом, но и геномами всех симбиотических микроорганизмов.
117
Связанный с обменом веществ и питанием.
118
Микробиоценоз – устойчивое
119
Микробиота – бактериальная микрофлора.
Функциональную значимость здоровой микрофлоры трудно переоценить. Конкурируя за доступные питательные вещества и необходимое пространство, полезная микробиота:
1) подавляет рост патогенов;
2) обеспечивает питание, выживание и деление эпителиальных клеток;
3) осуществляет взаимодействие с иммунной и нервной системами, развитие и созревание связанной с кишечником лимфоидной системы, формирование иммунологической памяти;
4) вызывает ферментирование неусваиваемых пищевых остатков, синтез короткоцепочечных жирных кислот, аминокислот и витаминов для нашего организма.
Воспалительные процессы в кишечнике приводят к системному выбросу воспалительных цитокинов, которые, попадая в мозг, активизируют глиальные клетки [120] , имеющие иммунное происхождение и поэтому способные при своей активизации вызывать воспаление в ткани головного мозга. Эти процессы ускоряют старение всего организма и возникновение когнитивных нарушений. Прицельное подавление воспаления в гипоталамусе мозга способствовало увеличению продолжительности жизни мышей до 20 %. В свете вышесказанного не вызывает удивления причинная связь нарушения микрофлоры с серьезными расстройствами, такими как ожирение, сахарный диабет 2-го типа, сердечно-сосудистые заболевания, аллергия, колоректальный рак, а также депрессия, аутизм, деменция.
120
Глиальные клетки – вспомогательные клетки нервной ткани, играющие роль в защите и питании нейронов.
Идея о роли кишечного микробиома в старении принадлежит нобелевскому лауреату И.И. Мечникову. Он предположил, что с возрастом в толстом кишечнике развивается патогенная микрофлора, которая отравляет организм, вызывая патологическое ускоренное старение. Именно его исследования заложили научную основу для применения кисломолочных продуктов питания в оздоровлении организма. И сейчас микробиом человека рассматривается как важная терапевтическая мишень. Лечение дисбаланса микробиоты играет все более важную роль в профилактической медицине.
Закон Эшби гласит: чем разнообразнее экосистема, тем она устойчивее, а следовательно, менее подвержена разрушительным влияниям. Согласно исследованиям С. Рампелли, в кишечнике с возрастом снижается биоразнообразие микрофлоры. Уменьшается количество представителей нормофлоры клостридий и бифидобактерий и возрастает доля патобионтов [121] – энтеробактерий и грибов, которые способствуют воспалительным процессам кишечника. Больше всего от подобных изменений страдает бактериальный синтез короткоцепочечных органических кислот – пирувата и бутаноата, необходимых для питания эпителиальных клеток стенки кишечника. С возрастом снижается сахаролитический [122] потенциал микробиоты, однако возрастает протеолитический [123] . Проникновение эндотоксинов [124] патологических бактерий через стенку кишечника в кровь или лимфу может сопровождаться системным воспалением.
121
Патобионт – болезнетворный микроорганизм.
122
Расщепление углеводов.
123
Разложение белков.
124
Эндотоксин – компонент наружной части клеточной мембраны бактерий, высвобождающийся при их разрушении и вызывающий воспалительные процессы.
Сегодня с помощью технологий высокопроизводительного параллельного секвенирования [125] можно анализировать особенности микробных метаболических путей и «сигнальных систем». Фундаментальным прорывом в развитии метагеномики [126] микробиома человека можно считать создание двух консорциумов: MetaHIT (Metagenome of Human Intestinal Tract) в Европе и HMP (Human Microbiome Project) в США. Ученые из MetaHIT совместно с коллегами из Пекинского института генома создали каталог из 3,3 миллиона бактериальных генов кишечника человека. В это же время исследователями из США были опубликованы геномы микроорганизмов (бактерий и архей), найденных в микробиоте человека. Недавно был создан Русский метагеномный проект , основным участником которого является НИИ физико-химической медицины Минздравсоцразвития
125
Секвенирование – определение полной нуклеотидной последовательности ДНК.
126
Метагеномика – раздел молекулярной генетики, изучающий метагеном – генетический материал, получаемый напрямую из образцов среды.
Омиксные биомаркеры старения
Как мы увидели, не существует «идеального» биомаркера старения. В связи с удешевлением современных высокопроизводительных методов изучения биологических молекул многообещающим подходом может стать полный анализ и сопоставление профилей ДНК, РНК, белков и метаболитов [127] людей разных возрастов с разным спектром хронических заболеваний.
Наука, изучающая структуру и функции совокупности всех наших генов, – геномика, белков, – протеомика, метаболитов, – метаболомика. Опираясь на сходство окончаний в этих терминах, биомаркеры, разрабатываемые в рамках этих наук, называют омиксными. Старение – слишком сложный процесс, чтобы полагаться на изменение одного-двух показателей. Поэтому, опираясь на современные технические возможности, исследователи стали анализировать «омики», то есть все совокупности генов, транскриптов, метаболитов и белков (табл. 2).
127
Метаболиты – органические вещества, синтезируемые организмом.
Таблица 2. Омиксные исследования человека
1 Присоединение метильной группы к цитозину в составе CpG-динуклеотида молекулы ДНК без изменения самой нуклеотидной последовательности ДНК.
2 Класс ядерных белков, выполняющих две основные функции: они участвуют в упаковке нитей ДНК в ядре и в эпигенетической регуляции таких ядерных процессов, как транскрипция, репликация и репарация.
3 Белки, структура которых в основном совпадает со структурой гистона, но свойства несколько изменены из-за различий в аминокислотной последовательности.
4 Закономерная регулярность, образец, рисунок.
5 Малые молекулы РНК, не кодирующие белок, принимающие участие в транскрипционной и посттранскрипционной регуляции активности генов путем РНК-интерференции.
1 Матричная РНК, содержащая информацию о первичной структуре (аминокислотной последовательности) белков.
Геномика
Наиболее развит и доступен каждому уже сейчас геномный подход. Строго говоря, исследования генома не дают нам биомаркеров старения. В геноме лишь кроется ключ к наследственным задаткам, которые достались нам от родителей и свидетельствуют, например, о потенциальном риске синдромов ускоренного старения (наследственных болезнях, при которых в 30 лет люди становятся глубокими старцами) или предрасположенности к тому или иному возрастзависимому заболеванию (раку, сахарному диабету 2-го типа, нейродегенерации). Учет таких рисков и коррекция в соответствии с ними образа жизни и частоты профилактических обследований – залог здорового долголетия. В ряде случаев, когда речь идет о накопленных с возрастом соматических мутациях [128] , анализ генома какой-либо ткани (например, клеток крови или кожи) может помочь спрогнозировать риск развития патологии, например опухоли, или оценить общий темп старения.
128
Классический пример – ген «защитника генома» белка р53, мутации в котором встречаются в 50 % всех злокачественных опухолей.
В основе определения генетической предрасположенности лежит несколько видов анализа.
Во-первых, это исследование снипов – вариаций последовательности ДНК, когда один из нуклеотидов в геноме одного индивидуума отличается от другого. Анализ предрасположенности по снипам стал возможен благодаря масштабным исследованиям ассоциации между заболеваемостью и последовательностью генома у большого количества людей по всему миру.
Полногеномные ассоциативные исследования (GWAS) привели к обнаружению многих снипов, тесно связанных с хроническими заболеваниями, являющимися основными причинами смерти человека (ишемическая болезнь сердца, рак, сахарный диабет 2-го типа) (рис. 14). В настоящее время одновременный анализ сотен тысяч снипов позволяет оценивать риск развития около трех сотен хронических (разные формы рака, сердечно-сосудистые, нейродегенеративные заболевания, сахарный диабет 2-го типа) и наследственных (включая синдромы ускоренного старения Вернера и Хатчинсона – Гилфорда) заболеваний.