Как проектировать электронные схемы
Шрифт:
МНОГООБОРОТНЫЙ ПОТЕНЦИОМЕТР
Многооборотные потенциометры (полное перемещение движка происходит за десять оборотов регулировочного винта) очень полезны, когда нужно отрегулировать какую-либо величину, например выходное напряжение источника питания, с высокой точностью. К сожалению, цена устройств часто слишком высока для любителей.
В продаже имеются механические переключатели, объединенные с переменными резисторами, позволяющие трансформировать однооборотную модель потенциометра в многооборотную. Такие компоненты также дорого стоят и занимают много места.
Есть простой и эффективный способ, позволяющий
Один из них имеет требуемое сопротивление (или чуть ниже), а второй, значительно меньший по номиналу, позволяет точно регулировать суммарное сопротивление. Вначале с помощью первого резистора получают приблизительную (грубую) настройку, а окончательный результат обеспечивает тонкая настройка вторым резистором. Такой подход неприменим для потенциометрической схемы регулировки (со средней точкой).
ЛОГИЧЕСКИЙ ВЕНТИЛЬ ИЛИ
Операция ИЛИ принадлежит к разряду классических логических операций. В электротехнических устройствах она выполняется при помощи серии выключателей или контактов реле, расположенных параллельно. Если хотя бы один из контактов замыкается, то сигнал передается со входа на выход. В электронике вместо контактов используются разнообразные диоды (рис. 2.64).
Такое простое решение часто позволяет сэкономить одну или несколько интегральных схем. Наименьшая величина обратного сопротивления диода при напряжении Vcc составляет около 10 кОм. Быстродействие схемы зависит от выбранного типа диодов. По данному параметру она не уступает другим диодным схемам.
ЛОГИЧЕСКИЙ ВЕНТИЛЬ И
Логическую операцию И (как и описанную выше операцию ИЛИ) можно выполнить, используя полупроводниковые диоды (рис. 2.65). Такой вариант встречается реже, чем операция ИЛИ, хотя имеет аналогичные характеристики и достоинства.
ЗАЩИТА ПРОТИВ ИНВЕРСИИ ПОЛЯРНОСТИ
Когда какое-либо устройство питается от источника постоянного напряжения и включается лишь на короткое время (например, индикатор момента зажигания, применяющийся для диагностики двигателя внутреннего сгорания), возникает риск инверсии полярности. Последствия этого события нетрудно себе представить, особенно когда для питания используется мощный аккумулятор.
Если между напряжением питания и напряжением, необходимым для работы устройства, имеется существенная разница (не менее 2 В), то на входе схемы можно поставить выпрямительный мост (рис. 2.66). Тогда полярность напряжения на входе не будет играть никакой роли, хотя падение напряжения на диодах моста неизбежно приведет к потерям
ДВУХТАКТНЫЙ КАСКАД
Двухтактный каскад — это каскад на двух транзисторах, обычно используемый на выходе быстродействующих цифровых устройств.
Кроме того, он входит в состав многих управляющих схем на МОП транзисторах. Двухтактный каскад включают также на выходе большинства генераторов синусоидального напряжения, работающих на низкоомную нагрузку (обычно 50 Ом). Его применение обеспечивает улучшение согласования генератора с нагрузкой. Базовая схема проста (рис. 2.67): у двух комплементарных транзисторов, включенных по схеме с общим коллектором, соединены эмиттеры и базы.
Транзистор n-р-n типа присоединен к положительному полюсу источника питания, а транзистор р-n-р типа — к отрицательному. Транзисторы открываются поочередно, и напряжение на выходе практически повторяет по форме входной сигнал.
Двухтактный каскад обладает одним недостатком: он не может полностью воспроизвести сигнал, который в отрицательный полупериод опускается до нуля. В таком случае, как показано на рисунке, перепад напряжения на выходе оказывается меньше, чем на входе, из-за конечного остаточного напряжения на открытом транзисторе.
Этот недостаток не играет никакой роли, когда каскад используется для управления схемой на МОП транзисторах, но существенно важен для выходных каскадов. С целью устранения описанной проблемы необходимо обеспечить симметричное питание двухтактного каскада, то есть применить дополнительный источник отрицательного напряжения.
ДИОДНЫЕ ВЫПРЯМИТЕЛИ
Чтобы создать источник постоянного напряжения питания, используют однополупериодное или двухполупериодное выпрямление.
Типичные схемы выпрямителей приведены на рис. 2.68.
Первый вариант (с одиночным диодом, рис. 2.68а) применяется редко из-за низкого КПД и высоких пульсаций выходного напряжения. Наиболее популярен двухполупериодный мостовой выпрямитель, содержащий четыре диода (рис. 2.68б).
Многие трансформаторы имеют две вторичные обмотки, которые можно соединить параллельно, чтобы получить максимальную выходную мощность. Схема со средней точкой во вторичной обмотке и двумя диодами (рис. 2.68в) выполняет ту же функцию, что и мостовой выпрямитель. При этом она дешевле и занимает меньше места. На рис. 2.68 г показана форма сигналов в различных точках: до выпрямителя (А), на выходе однополупериодного (В) и двухполупериодного (С) выпрямителя.