Чтение онлайн

на главную

Жанры

Как устроена машина времени?
Шрифт:

Категорического запрета на это нет. А то, что мы не наблюдаем их в повседневной жизни, говорит лишь о том, что обратные явления по сравнению с прямыми происходят очень и очень редко. Может случиться так, что за всю историю Вселенной нам не доведется их наблюдать, но это. вовсе не значит, что они не могут происходить вообще.

Эту идею впоследствии поддержал уже известный нам Н. А. Козырев. Он предположил, что все известные законы движения — лишь некоторая приближенная форма точных законов, которые еще предстоит открыть. И если в приближенных законах соблюдается обратимость,

то точные законы будут обладать обратимостью, хотя, вполне возможно, она и будет выражена достаточно слабо.

Косвенным подтверждением этих высказываний можно, пожалуй, считать открытие не столь давно одной не совсем обычной элементарной частицы. Речь идет о нейтральном К-мезоне. Эта нестабильная, распадающаяся Частица «различает» прошлое и будущее; два направления времени для нее не симметричны.

Тогда получается, что направление времени связано с направлением большей части процессов во Вселенной? Именно такую догадку выдвинул в свое время английский физик Артур Эддингтон. Он высказал предположение, что направление течения времени связано с расширением Вселенной, и назвал это явление «стрела времени». В гот момент, когда расширение сменится сжатием, может повернуться в другую сторону и «стрела времени».

Так это или не так, еще предстоит разобраться нашим потомкам. А для этого нужно понять, из чего же именно состоит поток времени.

Фотон… Гравитон… Хронотон?

В настоящее время мы как-то уже привыкли к тому, что все окружающие нас излучения можно разделить на составляющие их частицы. К примеру, всем сегодня известно, что свет в конечном итоге состоит из фотонов. Причем никто даже особо не удивляется тому, что фотону свойствен дуализм: в одних случаях он ведет себя как материальная частица, в других — как электромагнитная волна.

Более того, если мы как следует углубимся в дебри современной квантовой физики, то в конце концов обнаружим, что микрочастица по своей природе не является, вообще-то говоря, ни тем и не другим.

Она только похожа на волну или на частицу в том или ином эксперименте. Если в какой-то ситуации микрочастица похожа на «обычную частицу», то для нее большую определенность приобретает ее положение в пространстве. Если же она в данном конкретном случае более походит на волну, то и большее значение приобретает ее импульс. И физики пользуются в каждом конкретном случае тем или иным определением.

Однако они, эти определения, вообще говора, введены больше для удобства расчетов. На самом деле и импульс и положение частицы довольно неопределенны. Причем чем более определенна одна величина, тем более неопределенна будет другая.

Физики-теоретики даже сумели выразить количественно соотношение определенности и неопределенности и спокойно им пользуются при описании различных событий в микромире.

Так обстоят дела с описанием электронов, фотонов и других частиц, о которых на сегодняшний день физики знают достаточно много. Ну а как быть с гравитацией и временем?

Этот вопрос тоже в немалой степени занимает внимание теоретиков. О возможности существования гравитационных волн говорилось уже в первые годы развития общей теории относительности. А. Эйнштейн доказал, что из его теории следует возможность и даже необходимость существования таких волн.

Гравитационные волны — это волнообразные колебания пространства-времени, придающие ему дополнительную, бегущую волнами, как «барашки» по морю, искривленность. Теоретики полагают, что эти волны распространяются в четырехмерном пространстве-времени примерно так же, как в воздухе распространяются упругие акустические колебания или электромагнитные волны.

Гравитационные волны, как и электромагнитные, распространяются с предельной скоростью — 300 тыс. км/с. Однако при этом непонятно, почему гравитационные возмущения распространяются намного быстрее световых. Возможно, для их распространения используются более короткие, внепространственные каналы типа «червоточин»?

Точного ответа на этот и другие подобные вопросы пока нет. Даже сами гравитационные волны пока не удается наблюдать или экспериментально зарегистрировать. Опытные установки, построенные в нескольких точках земного шара, пока не дали результатов, которые бы можно было однозначно интерпретировать как доказательство существования гравитационных волн.

И тем не менее теоретики отважно продолжают свои изыскания. К примеру, еще в 30-е годы советский физик М. П. Бронштейн применил к описанию гравитационных волн математический аппарат квантовой теории микромира. Он предположил, что гравитационные волны должны быть если не тождественны, то по крайней мере родственны электромагнитным колебаниям, свету.

И что же, теория показывает, что при некоторых условиях гравитационные волны вполне могут вести себя как потоки неких частиц, квантов этих волн. По аналогии с фотонами и электронами, эти частицы получили название гравитонов.

Гравитоны, с одной стороны, очень похожи на фотоны, полагают теоретики. Как и частицы света, они всегда должны двигаться с максимальной скоростью. Их масса должна быть связана с движением — масса покоя, как таковая, отсутствует.

С другой стороны, между этими частицами должны быть и определенные отличия. Фотон взаимодействует только с электрическими заряженными частицами, гравитон же со всеми — он представитель всемирного тяготения.

Следующий логический шаг — обнаружение квантов времени. Существуют ли они на самом деле? Точно этого пока никто не знает — у нас нет приборов, которые бы смогли фиксировать эти частицы.

Единственное, на что мы пока можем положиться, — на опыт всей физики. А он, этот опыт, учит: нет никакого времени, которое бы существовало «само по себе». Оно всегда связано с явлениями, которые происходят в окружающем нас мире. А значит, вполне вероятно, что на него должны распространяться законы этого мира. Так что в этом смысле мы вполне можем говорить о возможности существования неких частиц времени — хронотонов. Или хрононов?.. Точного названия для этих частиц пока нет, и их еще никому, как мы говорили, не удалось обнаружить. Хотя об атомарности, квантованное времени спорили еще мудрецы древности.

Поделиться:
Популярные книги

Мужчина моей судьбы

Ардова Алиса
2. Мужчина не моей мечты
Любовные романы:
любовно-фантастические романы
8.03
рейтинг книги
Мужчина моей судьбы

Разбуди меня

Рам Янка
7. Серьёзные мальчики в форме
Любовные романы:
современные любовные романы
остросюжетные любовные романы
5.00
рейтинг книги
Разбуди меня

Неверный

Тоцка Тала
Любовные романы:
современные любовные романы
5.50
рейтинг книги
Неверный

На границе империй. Том 9. Часть 2

INDIGO
15. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 2

Небо для Беса

Рам Янка
3. Самбисты
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Небо для Беса

Жребий некроманта 3

Решетов Евгений Валерьевич
3. Жребий некроманта
Фантастика:
боевая фантастика
5.56
рейтинг книги
Жребий некроманта 3

Черный Маг Императора 7 (CИ)

Герда Александр
7. Черный маг императора
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Черный Маг Императора 7 (CИ)

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Зауряд-врач

Дроздов Анатолий Федорович
1. Зауряд-врач
Фантастика:
альтернативная история
8.64
рейтинг книги
Зауряд-врач

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4

Проводник

Кораблев Родион
2. Другая сторона
Фантастика:
боевая фантастика
рпг
7.41
рейтинг книги
Проводник

Возмездие

Злобин Михаил
4. О чем молчат могилы
Фантастика:
фэнтези
7.47
рейтинг книги
Возмездие

Восход. Солнцев. Книга XI

Скабер Артемий
11. Голос Бога
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Восход. Солнцев. Книга XI

Курсант: Назад в СССР 10

Дамиров Рафаэль
10. Курсант
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Курсант: Назад в СССР 10