Каталитический риформинг бензинов. Теория и практика
Шрифт:
Заполнение зоны происходит в соответствии с принципом Паули, то есть на каждой молекулярной орбитали независимо от ее протяженности может находиться максимум два электрона. Степень заполнения зоны зависит от количества d– электронов атома. Верхний уровень энергии, занятых МО при температуре 0 К, носит название уровня Ферми (f).
При Т > 0 электроны занимают более высокие уровни,
и заселенность орбиталей определяется распределением Ферми – Дирака.
Очевидно, что энергия орбиталей, находящихся выше
Таким образом, образование d– зоны обеспечивает более сильное дативное взаимодействие, которое увеличивается при подъеме уровня Ферми.
Компактность d– зоны и высокая плотность состояний позволяют рассматривать d– зону как одну молекулярную орбиталь, взаимодействующую с молекулой адсорбата с образованием связующей и разрыхляющей орбиталей. Подробное описание модели сильной связи приведено в [26; 54].
Современные представления об образовании химической связи между адсорбатом и поверхностью d– металла разработаны Хофманом и доступно изложены в его книге [25].
Рассмотрим, что происходит, когда молекула адсорбата, в нашем случае молекула СО, подходит к поверхности переходного металла.
Электронная структура молекулы рассмотрена ранее. Верхней заполненной орбиталью в молекуле является 3.
Эта орбиталь в основном локализована на атоме углерода и может рассматриваться как неподеленная электронная пара
углеродного атома. Указанные свойства 3-МО позволяют участвовать в образовании -связи с молекулярными орбиталями аналогичной симметрии, локализованными в верхней части d– зоны переходного металла. Такими МО являются орбитали, образованные из атомных dz2.
Вакантной орбиталью с самой низкой энергией в молекуле СО является разрыхляющая 2-МО. 2-орбиталь имеет узловую плоскость и способна к -перекрыванию с МО d– зоны, которые образованы атомными орбиталями dxz и dyz, также имеющими узловую плоскость.
Особенностью 2-орбитали является неравномерное распределение электронной плотности в лепестках орбитали.
Поскольку большая часть электронной плотности сконцентрирована в лепестке орбитали, локализованном у атома углерода, то максимальное перекрытие с орбиталями металла достигается в случае, когда приближающаяся молекула СО своей осью ориентирована перпендикулярно поверхности металла.
Схема взаимодействия орбиталей молекулы и металла при образовании донорно-акцепторной и дативной связи представлена на рис. 27.
Рис. 27. Схема взаимодействия орбиталей молекулы и металла
при образовании донорно-акцепторной и дативной связи
Существенным при рассмотрении взаимодействия является то, что 3-МО имеет уровень энергии ниже уровня Ферми и поэтому может перекрываться только с заполненными dz2–
При приближении молекулы к поверхности возникает взаимодействие между 3-орбиталью и заполненными орбиталями d– зоны, которое приводит к расщеплению исходных уровней энергии с образованием двух новых энергетических уровней, соответствующих связующей и разрыхляющей орбиталям.
Поскольку это взаимодействие заполненных орбиталей, то новые орбитали будут также заполнены (рис. 28).
В случае взаимодействия молекул нетто-результат 4-электронного 2-орбитального взаимодействия однозначен – отсутствие связывания из-за заполнения образующейся разрыхляющей орбитали. При взаимодействии с d– зоной этот результат зависит от того, насколько сильным будет расщепление уровней энергии. Чем ближе уровни энергии орбиталей и чем ближе молекула подходит к поверхности, тем больше интеграл перекрывания орбиталей и энергия стабилизации, определяющая расщепление.
Рис. 28. Взаимодействие 3-орбиталей
и электронной d– зоны [25]
При достаточно сильном расщеплении уровень новой разрыхляющей орбитали достигает уровня Ферми, и тогда электроны с этой орбитали могут быть сброшены в d– зону, где они займут пустые уровни.
Рассмотренные 4-электронные взаимодействия показаны на рис. 29, где а соответствует взаимодействию двух молекул, б – молекулы с поверхностью металла.
Эти пустые орбитали локализованы на поверхности металла и являются разрыхляющими орбиталями. Заполнение их приводит к ослаблению связей между поверхностными атомами металла и является причиной часто наблюдаемой реконструкции поверхности при хемосорбции.
В результате взаимодействие в системе «молекула – поверхность» из отталкивающего переходит в связующее с образованием связи молекулы с металлом.
Рис. 29. Схема 4-электронных взаимодействий:
а – двух молекул; б – молекулы с поверхности металла [25]
Расчеты с использованием расширенного метода Хюккеля для адсорбции СО на поверхности никеля показывают, что молекула СО теряет 0,38 электрона. В итоге заселенность 3-орбитали снижается с 2,0 до 1,62.
Выигрыш энергии при образовании связи зависит от параметров d– зоны металла и пропорционален выражению
,
где f – степень заполнения d– зоны; d и 3 – уровни энергии центра d– зоны и 3-орбитали молекулы СО; – резонансный интеграл [26].