Каталитический риформинг бензинов. Теория и практика
Шрифт:
Первое промышленное внедрение катализатора R-5 (0,3%Pt/Al2O3– F) состоялось в октябре 1949 года на небольшом НПЗ Old Dutch Refinery (Muskegon, Michigan) на базе реконструированной установки термического риформинга. Реконструкция установки, включая установку реакторов и стоимость загрузки катализатора, были сделаны за счет компании UOP [95].
Установка не имела блока гидроочистки по той причине, что самого процесса гидроочистки на тот момент еще не существовало, и работала, как и ее предшественник, при высоком давлении (70 бар).
Подробная история разработки и внедрения
Внедрение платинового катализатора на кислотном носителе революционизировало процесс каталитического риформинга.
Высокая дегидрирующая активность платины в сочетании с применением кислотного носителя обеспечили снижение рабочих температур процесса, увеличение выхода и октанового числа целевого продукта С5+, значительное сокращение скорости накопления кокса и позволили довести продолжительность реакционного цикла до года и более.
Уже к 1962 году большинство установок гидроформинга в США были реконструированы под процесс риформинга на платиновом катализаторе или переведены на гидроочистку сырья риформинга, при этом доля установок с платиновыми катализаторами составила 95,3 % от суммарной мощности каталитического риформинга [21].
Интересно отметить, что на установках платформинга, работавших на негидроочищенном сырье, регенерация катализатора не производилась, вместо этого осуществлялась его замена после каждого реакционного цикла, что было обусловлено сульфатным отравлением при проведении выжига кокса и отсутствием эффективных способов редиспергирования платины.
Изменение структуры производства автомобильных бензинов в США с внедрением процессов гидроформинга и платформинга представлено на рис. 5 [21].
Рис. 5. Удельный объем производства различных бензинов США.
Бензины: I – прямой гонки; II – термического риформинга;
III – термического крекинга; IV – каталитического крекинга;
V – каталитического риформинга
Последующее введение рения в платиновый катализатор явилось еще одним выдающимся событием в развитии процесса каталитического риформинга, обеспечив резкое повышение стабильности катализатора риформинга и улучшение селективности за счет снижения рабочего давления процесса.
Переход от риформинга высокого давления (35–40 бар в продуктовом сепараторе) к процессу при среднем давлении (15–25 бар) позволил организовать рентабельное производство катализата с RON 95–100 пунктов.
Глава 4. Химические реакции
на платиновом катализаторе
Целевые и побочные реакции. Реакции идеального риформинга
Основные отличия в химизме платформинга и гидроформинга обусловлены различиями в металлической и кислотной функциях применяемых катализаторов.
Алюмомолибденовые катализаторы гидроформинга имели слабо выраженную дегидрирующую и изомеризующую активность, связанную
Низкая кислотность катализатора гидроформинга ограничивала протекание реакций С5– циклизации парафиновых углеводородов с последующей изомеризацией в циклогексан и его гомологи.
Активность алюмомолибденового катализатора в реакции ароматизации парафиновых углеводородов была в 10 раз, а для Cr2O3, альтернативного катализатора гидроформинга, – в 100 раз меньше, чем для платинового катализатора Pt/Al2O3.
Ниже представлены основные реакции платформинга.
Реакция дегидрирования циклогексана и его гомологов с образованием ароматических углеводородов:
Реакция С5– циклизации парафиновых углеводородов с образованием метилциклопентана и его гомологов; иногда используется другое название – дегидроциклизация до нафтенов:
.
Реакция изомеризации метилциклопентана и его гомологов с образованием соответствующих нафтенов с 6-членным кольцом:
.
Реакция дегидроизомеризации 5-членных нафтенов с образованием ароматических углеводородов; реакция является комбинацией изомеризации и дегидрирования:
Реакция дегидроциклизации парафиновых углеводородов до ароматических углеводородов; является комбинацией реакций циклизации, изомеризации и дегидрирования:
.
Реакция дегидрирования парафиновых углеводородов:
н – С6Н14 н – С6Н12 + Н2.
Реакция изомеризации парафиновых углеводородов:
н – С6Н14 изомеры гексана.
Побочными и нежелательными реакциями платформинга являются реакции крекинга и коксообразования.
Реакции крекинга включают гидрокрекинг парафиновых углеводородов на кислотных центрах и гидрогенолиз на металлических центрах катализатора:
реакция гидрогенолиза парафиновых углеводородов