Чтение онлайн

на главную

Жанры

Ключевые технологии и приемы использования щитовых проходческих комплексов при сооружении туннелей
Шрифт:

Рис. 3-18. Форма впадины оседания верхнего грунта над туннелем – кривая нормального распределения

(3-46а),

(3-46а),

где: S (x) –

длина оседания поверхности земли в области центральной линии туннеля;

S max – степень просадки поверхности земли относительно центральной оси туннеля;

x – расстояние от центра оси до края впадины оседания;

i – коэффициент ширины впадины оседания.

V s— степень потери пласта при проходке 1м туннеля.

(3-47),

где: z – расстояние от центра забоя до поверхности земли; ? – угол внутреннего трения окружающих пластов, ширина впадины оседания поверхности земли B ? 2.5i.

Aттвелл внес корректировки в коэффициент ширины i, предложил коэффициент ширины впадины поперечного оседания i, зависящий от прочности пласта вблизи поверхности земли, глубины залегания туннеля и радиуса туннеля, что можно приближенно записать как:

(3-48),

(3-49),

где: z – расстояние от центра забоя до поверхности земли;

R – внешний радиус щита;

A – поперечное сечение туннеля;

K, n – испытательный коэффициент;

V – объем впадины оседания;

? max – степень оседания поверхности земли по центральной линии туннеля.

Английские ученые Клаф и Шмидт в 1974 году предложили следующую расчетную формулу коэффициента ширины впадины оседания поверхности в условиях насыщенной глинистой гидропластичности:

(3-50),

где: z – глубина от поверхности земли до центра туннеля;

R – радиус туннеля.

О’Рейли-Нью провел анализ максимальных значений просадки, объема впадины оседания и фактических значений точки перегиба для 11 из 19 объектов в условиях вязких слоев и для 6 из 16 объектов в условиях песчаного грунта и грунта обратной засыпки в Англии, на основании чего выдвинул гипотезу о том, что форма впадины оседания представляет собой кривую нормального распределения, и предположил, что для вязких слоев подходит следующая формула:

(3-51),

(3-52)

где: для k в твердом глинистом грунте берется 0.4, в мягком глинистом грунте берется 0.7, а в глинистом грунте средней твердости и мягкости берется 0.5. В дополнение к этому, с помощью статистического метода также вывел формулу вычисления степени максимального горизонтального оседания;

для песчанистых грунтов:

(3-53),

для вязких грунтов:

(3-54),

формула

для вычисления диапазона влияния оседания:

(3-55),

где: в значениях k и n – при использовании щита с грунтопригрузом, для вязкого грунта: k = 1.3, n = 0.70; для песчанистого грунта: k = 0.65, n = 1.2.

2) Цифровое моделирование

Способ цифрового моделирования – это еще один важный метод прогнозирования оседания поверхности земли. Хотя параметры технологического уровня невозможно точно определить до начала строительства, однако, влияние определенных изменений этих параметров на смещение поверхности земли и грунтовых слоев вокруг туннеля поддается оценке. С помощью моделирования анизотропии почвы и внутренней пластичности грунта возможно получить рациональные значения распределения оседания, также возможно осуществлять прогнозирование горизонтального и вертикального распределения смещения грунта на ключевых участках туннельного строительства. Среди часто применяемых техник цифрового моделирования существуют: метод конечных элементов, метод граничных элементов и другие методы, покрывающие сферы двухмерной плоской деформации, трехмерной упругопластичности и т. д.

3) Испытание на модель

В соответствующих условиях, моделирование производственных работ с помощью испытания моделей для определения закономерностей изменения смещения грунтовых масс и рабочих параметров, а также определения соответствующих требований и мероприятий технического контроля – это эффективное средство для снижения строительных рисков и обеспечения безопасности. В настоящее время испытания модели для щитопроходных работ подразделяются на два типа: испытание модели центробежного поля и испытание модели гравитационного поля. Испытание центробежной модели характеризуется точностью коэффициента подобия и высокой степенью соответствия действительности, но технология испытаний сложна. При испытании гравитационной модели, показатели параметров, особенно коэффициент подобия, не могут быть установлены и воссозданы с полной точностью, однако, в практических условиях удается гарантировать рациональность и достоверность подобия получаемых параметров, также удается достигать достаточно хороших результатов испытаний и их цели, при этом технология испытаний достаточно проста и процессы легко контролировать. Принимая во внимание реальные и экспериментальные условия, для прогнозирования обычно применяется испытание модели гравитационного поля.

В работах Lee Androw (1982), Roweetal (1983) был предложен метод прогнозирования оседания поверхности земли и разноглубинных грунтовых слоев. Было введено понятие о параметре потери пласта GAP (параметр суммарного зазора) для прогнозирования оседания недренированных насыщенных глинистых грунтов. Под GAP подразумевается количество избыточно выкопанных грунтовый масс, превышающее внешний диаметр сегментов туннеля, которое включает в себя потерю избыточно выкопанного грунта под действием силы трехмерного движения в отношении поверхности забоя и потерю грунта под воздействием факторов проведения работ. Размер зазора GAP равен расстоянию от свода произведенной щитом выемки до верхушки тюбинговой обделки туннеля, как показано на рис. 3-19.

Рис. 3-19. Определение параметра потери грунта после проходки GAP

По определению Lee:

(3-56),

где: GP – геометрический просвет между внешним диаметром щита и внешним диаметром тюбинга, сформированный толщиной хвостовой части щита ? и хвостовым зазором х;

<
Поделиться:
Популярные книги

Дайте поспать!

Матисов Павел
1. Вечный Сон
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Дайте поспать!

Инкарнатор

Прокофьев Роман Юрьевич
1. Стеллар
Фантастика:
боевая фантастика
рпг
7.30
рейтинг книги
Инкарнатор

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

Брак по-драконьи

Ардова Алиса
Фантастика:
фэнтези
8.60
рейтинг книги
Брак по-драконьи

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Черный Маг Императора 6

Герда Александр
6. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
7.00
рейтинг книги
Черный Маг Императора 6

Авиатор: назад в СССР 14

Дорин Михаил
14. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 14

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Возвышение Меркурия. Книга 14

Кронос Александр
14. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 14

Сама себе хозяйка

Красовская Марианна
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Сама себе хозяйка

Хуррит

Рави Ивар
Фантастика:
героическая фантастика
попаданцы
альтернативная история
5.00
рейтинг книги
Хуррит

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3

Два лика Ирэн

Ром Полина
Любовные романы:
любовно-фантастические романы
6.08
рейтинг книги
Два лика Ирэн

Неожиданный наследник

Яманов Александр
1. Царь Иоанн Кровавый
Приключения:
исторические приключения
5.00
рейтинг книги
Неожиданный наследник