Книга по химии для домашнего чтения
Шрифт:
В настоящее время фосген применяют в многочисленных органических синтезах.
9.29. СУРИК
Это событие произошло более 3000 лет тому назад. Прославленный греческий художник Никий ожидал прибытия заказанных им белил с острова Родос в Средиземном море. Корабль с красками прибыл в афинский порт Пирей, но там неожиданно вспыхнул пожар. Пламя охватило и корабль Никия. Когда пожар погасили, расстроенный Никий подошел к останкам корабля, среди которых увидел обгоревшие бочки. Вместо белил он обнаружил под слоем угля и золы какое-то ярко-красное вещество. Пробы Никия показали, что это вещество — превосходная красная краска. Так пожар
2[Pb(ОН)2•2PbСO3] + O2 = 2(Pb2IIPbIV)O4 + 4СO2^ + 2H2O^.
Сурик — это тетраоксид свинца(IV)-дисвинца(II) (см. 1.11; 1.14).
9.30. ОГНИВО ДЁБЕРЕЙНЕРА
Явление каталитического действия платины было открыто случайно. Немецкий химик Дёберейнер (см. 4.9) занимался химией платины. Он получил губчатую, очень пористую платину («платиновую чернь»), прокаливая гексахлороплатинат аммония (NH4)2IPtCl6]:
(NH4)2[PtCl6] = Pt + 2NH3^ + 2Сl2^ + 2НСl^.
В 1823 г. во время одного из опытов кусочек губчатой платины Pt оказался около прибора для получения водорода H2. Струя водорода, смешавшись с воздухом, попала на платину, водород вспыхнул и загорелся. Дёберейнер сразу оценил значение своего открытия. Спичек в то время не было. Он сконструировал прибор для зажигания водорода, получивший название «огниво Дёберейнера», или «зажигательной машинки». Этот прибор вскоре стали продавать по всей Германии.
Платину Дёберейнер получал из России с Урала. В этом ему помог его друг И.-В. Гёте, министр Веймарского герцогства во время правления Карла-Августа. Сын герцога был женат на Марии Павловне, сестре двух русских царей — Александра I и Николая I. Именно Мария Павловна была посредницей в получении Дёберейнером платины из России (см. 10.14).
9.31. ГЛИЦЕРИН И АКРОЛЕИН
В 1779 г. шведский химик Шееле (см. 2.7) открыл глицерин НОСН2СH(ОН)CН2ОН. Для исследования его свойств он решил освободить вещество от примеси воды. Добавив к глицерину водоотнимающее вещество, Шееле стал перегонять глицерин. Поручив эту работу своему помощнику, он вышел из лаборатории. Когда Шееле вернулся, помощник лежал около лабораторного стола без сознания, а в комнате стоял резкий острый запах. Шееле почувствовал, как его глаза из-за обилия слез перестают что-либо различать. Он быстро вытащил помощника на свежий воздух и проветрил помещение. Только через несколько часов к помощнику Шееле с трудом вернулось сознание. Так было установлено образование нового вещества — акролеина, что в переводе с греческого означает «острое масло».
Реакция образования акролеина связана с отрывом двух молекул воды от глицерина:
C3H8O3 = CH2(CH)CHO + 2Н2O.
Акролеин имеет состав CH2(CH)CHO и является альдегидом акриловой кислоты. Он представляет собой бесцветную легко кипящую жидкость, пар которой сильно раздражает слизистые оболочки глаз и дыхательных путей, обладает токсическим действием. От образования ничтожных количеств акролеина зависит общеизвестный запах подгоревших жиров и масел, затухающей сальной свечи. В настоящее время акролеин широко используют при получении полимерных материалов и в синтезе различных органических соединений,
9.32. УГЛЕКИСЛЫЙ ГАЗ
Английский химик Пристли (см. 2.11) обнаружил, что в «испорченном воздухе» (так он называл диоксид углерода CO2) животные погибают. А растения? Он поставил под стеклянный колпак маленький горшок с цветами и рядом поместил зажженную свечу, чтобы «испортить» воздух. Вскоре свеча потухла из-за практически полного превращения кислорода, находящегося под колпаком, в диоксид углерода:
C + O2 = CO2.
Пристли перенес колпак с цветком и потухшей свечой к окну и оставил его до следующего дня. Утром он с удивлением заметил, что цветок не только не завял, но рядом на ветке раскрылся еще один бутон. Волнуясь, Пристли зажег еще одну свечу и быстро внес ее под колпак и поставил рядом с первой свечой. Свеча продолжала гореть. Куда же исчез «испорченный воздух»?
Так впервые была открыта способность растений поглощать диоксид углерода и выделять кислород. Во времена Пристли не знали еще состава воздуха, не знали и состава диоксида углерода (см. 3.15).
9.33. СЕРОВОДОРОД И СУЛЬФИДЫ
Французский химик Пруст (см. 1.64) изучал действие кислот на природные минералы. В некоторых опытах неизменно выделялся отвратительно пахучий газ сероводород H2S (см. 6.48; 7.47). В один из дней, действуя на минерал сфалерит (сульфид цинка ZnS) хлороводородной кислотой HCl:
ZnS + 2HCl = H2S^ + ZnCl2,
Пруст заметил, что голубой водный раствор сульфата меди CuSO4 в стоявшем рядом стакане покрылся коричневой пленкой. Он подвинул стакан с голубым раствором ближе к стакану, из которого выделялся H2S, и, не обращая внимания на запах, стал перемешивать голубой раствор. Вскоре голубой цвет исчез, а на дне стакана появился черный осадок. Анализ осадка показал, что он является сульфидом меди:
CuSO4 + H2S = CuSV + H2SO4.
Так, видимо, впервые было обнаружено образование сульфидов некоторых металлов при действии сероводорода на их соли.
9.34. АЛМАЗНАЯ ЛИХОРАДКА
Месторождение алмазов в Бразилии было открыто случайно. В 1726 г. португальский шахтер Бернард да-Фонсена-Лабо на одном из золотых приисков увидел, что рабочие во время карточной игры отмечают счет выигрыша или проигрыша с помощью блестящих прозрачных камней. Лабо узнал в них алмазы. У него хватило выдержки утаить свое открытие. Он взял у рабочих несколько наиболее крупных камней. Однако во время продажи алмазов в Европе свою находку Лабо скрыть не удалось. В Бразилию хлынули толпы искателей алмазов, началась «алмазная лихорадка».