Чтение онлайн

на главную - закладки

Жанры

Конструкции, или почему не ломаются вещи
Шрифт:

Способность запасать упругую энергию и при действии нагрузки отклоняться упругим образом без разрушения называется резильянсом и является очень ценным качеством конструкции. Резильянс можно определить как количество упругой энергии, которое можно запасти в конструкции, не причиняя ей повреждений.

Чтобы добиться высокого резильянса, конечно, не обязательно использовать очень длинную веревку или проволочный трос. Зачастую удобнее применять более короткие конструкционные элементы, такие, как спиральные пружины (в буферах железнодорожных составов) или прокладки из мягких материалов (в качестве отбойных амортизаторов судов), а также материалы с малым модулем Юнга типа пенорезины или пенопласта (для упаковки точной аппаратуры). Все они

могут испытывать большие относительные удлинения и сжатия, а поэтому способны запасать большую упругую энергию на единицу объема. Природная "подвеска" лыжников и животных своим совершенством в значительной мере обязана сравнительно низким модулям упругости и большой деформативности сухожилий и других тканей.

С другой стороны, хотя низкая жесткость и высокая растяжимость способствуют поглощению энергии и поэтому уменьшают возможность разрушения конструкции при ударе, может оказаться, что обладающая этими качествами конструкция будет слишком "мягкой" для выполнения своих функций. Такого рода соображения обычно ограничивают величину резильянса, которым можно снабдить конструкцию. Самолеты, здания, инструменты, оружие должны быть достаточно жесткими, чтобы выполнять свое назначение, поэтому в конструкциях стараются достигнуть компромисса между жесткостью, прочностью и резильянсом. Здесь-то и должен приложить свое искусство конструктор.

Оптимальные условия могут изменяться не только в зависимости от типа и класса конструкции, но и при переходе в ней от одного элемента к другому. Природа и здесь имеет преимущество, поскольку в ее распоряжении находится огромный диапазон упругих свойств различных биологических тканей. Простым, но интересным примером служит обычная паутина. Она подвержена ударным нагрузкам, создаваемым попадающими в нее мухами, и энергия возникающих ударов должна быть поглощена эластичными нитями. Оказывается, что длинные радиальные нити, на которые падает основная нагрузка, втрое жестче коротких круговых нитей, назначение которых ограничивается лишь ловлей мух.

Наряду с использованием конструкционных элементов, работающих на растяжение, таких, как веревки или нити паутины, и на сжатие, таких, как буферы железнодорожных составов и отбойные амортизаторы судов, имеется еще и много других способов запасать упругую энергию и достигать высокого резильянса. Для этих целей может годиться конструкция любой формы, способная испытывать упругие отклонения. Наиболее распространенными являются устройства, запасающие энергию посредством изгиба, подобно лукам и величавым корабельным мачтам. Именно так обстоит дело в растениях, деревьях, этот принцип лежит в основе действия большинства типов автомобильных рессор. Первоклассный меч не сломается, если его изогнуть дугой, коснувшись концом рукоятки, и снова обретет свою первоначальную форму.

Упругая энергия как причина разрушения

…обращались назад, как неверный лук.

Псалом 77

Достаточно высокий резильянс - качество, существенное для любой конструкции, без него она не могла бы поглощать энергию ударов. С этой точки зрения, чем большим резильянсом обладает конструкция, тем лучше. Столь хитроумные устройства, как корабли викингов и американский конный кабриолет, обладали очень большой гибкостью и высоким резильянсом. Если такого рода конструкции чрезвычайно не перегружать, после снятия нагрузки они тут же приходят в первоначальное состояние. Но, естественно, больших перегрузок и они не выдержат.

Далее, чтобы разорвать материал, в нем должна возникнуть трещина. Однако, как мы вскоре увидим, чтобы такая трещина продвинулась на своем пути, необходимо затратить энергию, которую надо где-то взять. Как мы говорили выше, можно без труда сломать лук, "стреляя" из него без стрелы. При этом запасенная в луке упругая энергия не может благополучно высвободиться и перейти в кинетическую энергию стрелы, а потому часть ее идет на образование трещин в материале самого лука. Другими словами, упругая энергия лука его же и ломает. Однако сломанный лук - это только частный случай разрушения вообще.

Все упругие вещества, находящиеся под действием нагрузки, содержат большее или меньшее количество упругой энергии, и эта энергия потенциально всегда может пойти на процесс разрушения их самих. Другими словами, запасенная упругая энергия может пойти на то, чтобы покрыть энергетические затраты на распространение трещины в конструкции и, следовательно, на поломку последней. В конструкции с высоким резильянсом может содержаться большая упругая энергия; того же рода энергия, к которой прибегали древние римляне, чтобы пробить массивные стены Карфагена, в равной мере годна на то, чтобы сам себя сломал пополам громадный супертанкер.

Согласно современной точке зрения, в том случае, когда материал подвергается растягивающей нагрузке, мы не должны рассматривать его разрушение как результат непосредственного растяжения химических связей между атомами. Иначе говоря, это отнюдь не простое следствие, вызванное действием растягивающего напряжения, как можно подумать, начитавшись классических учебников [30] . Прямым результатом увеличения нагрузки, действующей на конструкцию, будет лишь увеличение запаса упругой энергии в материале. Ответ на вопрос, поломается ли на самом деле конструкция в любом заданном месте (цена ответа может составить, например, 64 тыс. долларов), зависит от того, может ли упругая энергия перейти в энергию разрушения так, чтобы образовать трещину.

30

Теоретическое максимальное растягивающее напряжение, требуемое для того, чтобы действительно "оттянуть" атомы друг от друга, на самом деле весьма велико и много больше реальных значений прочности, определяемых посредством обычных испытаний материалов на растяжение.

Современную механику разрушения занимает прежде всего не вопрос о нагрузках и напряжениях, а вопрос о том, как, почему, где и когда упругая энергия может перейти в энергию разрушения. Конечно, в простых случаях, когда имеют дело с веревками и стержнями, действует классическая концепция критического разрушающего напряжения, однако для больших или сложных конструкций, таких, как мосты, пароходы или сосуды высокого давления, она, как мы уже видели, страдает опасным переупрощением. Оказывается, что независимо от того, подвергается ли конструкция удару или действию статической нагрузки, разрушение путем разрыва зависит главным образом от следующего:

1) от цены в единицах энергии, которую нужно заплатить, чтобы протолкнуть трещину;

2) от количества упругой энергии, которым располагает конструкция, готовая заплатить указанную цену;

3) от размеров и формы наиболее опасных отверстий, трещин или дефектов конструкции.

Тот факт, что величины энергии, необходимые для того, чтобы разрушить материал в любом данном поперечном сечении, для различных твердых тел весьма различны, легко подтвердить, ударив молотком сначала по стеклянной, а потом по консервной банке. Количество энергии, требуемое для разрушения материала, отнесенное к поперечному сечению, определяет его вязкость разрушения, или "трещиностойкость", которую в настоящее время чаще называют энергией или работой разрушения. Упомянутое свойство совершенно отлично и независимо от прочности материала на разрыв, которая определяется как напряжение (а не как энергия), требуемое для разрушения твердого тела. От трещиностойкости, или работы разрушения материала, в значительной мере зависит реальная прочность конструкции, особенно если она велика по размерам. А поэтому нам следует немного поговорить о работе разрушения различных типов твердых тел.

Поделиться:
Популярные книги

Смерть может танцевать 4

Вальтер Макс
4. Безликий
Фантастика:
боевая фантастика
5.85
рейтинг книги
Смерть может танцевать 4

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Я не дам тебе развод

Вебер Алиса
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я не дам тебе развод

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Тринадцатый II

NikL
2. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый II

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Гарем вне закона 18+

Тесленок Кирилл Геннадьевич
1. Гарем вне закона
Фантастика:
фэнтези
юмористическая фантастика
6.73
рейтинг книги
Гарем вне закона 18+

Счастье быть нужным

Арниева Юлия
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Счастье быть нужным

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2