Чтение онлайн

на главную

Жанры

Конструкции, или почему не ломаются вещи
Шрифт:

Практически невозможно с такой точностью планировать время надежной работы изделия. Возможен лишь статистический, основанный на опытных данных, подход к этой проблеме. Причем по самой природе вещей мы можем дать только более или менее разумные вероятностные оценки надежности. Ослабив конструкцию сверх меры, ее можно сделать легкой и дешевой, но тогда недопустимо возрастает вероятность частых поломок. И наоборот, слишком прочная, "вечная" с человеческой точки зрения - а именно этого всегда жаждет публика - конструкция может оказаться слишком тяжелой и дорогой. Как мы увидим ниже, дополнительный вес чаще увеличивает опасность, чем дополнительная прочность ее уменьшает. Поскольку все учесть невозможно, то, разрабатывая реальную конструкцию для

реальной жизни, необходимо примириться со всегда существующей - пусть малой, но конечной - вероятностью преждевременного выхода ее из строя.

Как указывает Альфред Пагсли в своей книге "Надежность конструкции", этот довольно интересный момент в рассуждениях как раз и может заставить нас отказаться от строго логического подхода к проблеме. Как говорит Пагсли, человеку присуща боязнь разрушения - вот почему обыватель цепко и упрямо держится за мысль, что любая конструкция, с которой он лично связан, вообще не должна разрушаться. Последствия такой точки зрения могут быть самыми различными; иногда это не приносит вреда, но иногда приводит к печальным результатам.

Во время войны английские авиаконструкторы были поставлены перед необходимостью разумного компромисса между прочностью и другими качествами самолета. Потери бомбардировщиков от действий немецкой противовоздушной обороны были очень большими, примерно один из 20 самолетов не возвращался из каждого боевого вылета [120] . Напротив, потери самолетов вследствие разрушения конструкции были незначительными - много меньше одного самолета из 10 тыс. Вес силовой конструкции самолета составляет примерно треть его общего веса, и было бы, видимо, разумным еще уменьшить его в обмен на другое оборудование, дающее самолету дополнительные преимущества. В этом случае число катастроф несколько увеличилось бы, но сэкономленный таким образом вес позволил бы увеличить число и калибр пушек или толщину брони, что привело бы к существенному общему снижению потерь. Но авиаторы не хотели даже слышать об этом. Они предпочитали больший риск быть сбитыми гораздо меньшему риску аварии по техническим причинам.

120

Каждый "тур долга" для летчика бомбардировочной авиации состоял из 30 боевых вылетов. Их служба поэтому была исключительно опасной. Потери в бомбардировочной авиации были сравнимы с потерями среди экипажей немецких подводных лодок, которые были весьма высокими.

Чувство возмущения поломкой конструкции, по мнению Пагсли, унаследовано нами от далеких предков, испытывавших постоянный страх, кроме всего прочего, и оттого, что сук или ветка дерева, на котором они жили, сломаются, и их дети, да и они сами, окажутся в пасти какого-нибудь саблезубого тигра или пещерного медведя. Как бы то ни было, инженеры не могут не считаться с этим чувством, хотя возникающий вследствие этого дополнительный вес может зачастую привести и к увеличению опасности.

О точности расчетов на прочность

Любой рациональный подход к вопросам прочности и надежности требует от инженера умения предсказать с достаточной точностью прочность предлагаемой им новой конструкции, даже если он толком не знает, на сколько времени этой прочности хватит. Как мы видели в гл. 3, прочность таких простых конструкций, как канаты, цепи, прямые колонны или балки, можно рассчитать достаточно надежно. Но этого не получается в случае весьма сложных конструкций, таких, как самолеты и корабли, для которых вопросы прочности особенно важны. Зная, что имеется огромный опыт проектирования различных сооружений, что существует обширная и математически изощренная литература на эту тему, что читаются бесконечные лекции по теории конструкций, мы можем не поверить последнему утверждению. Но это действительно так.

Рассмотрим, например, статистику прочности самолетов. Так как экономия веса здесь очень важна, а последствия разрушения всегда ужасны, проектирование самолетов, естественно, ведется со всей тщательностью. Дотошно проверяется каждая деталь. Чертежи и расчеты делают высококвалифицированные специалисты, используя при этом самые передовые научные методы.

После окончания работы все расчеты совершенно независимо проверяются другой группой специалистов. Таким образом, окончательные результаты настолько безошибочны и точны, насколько это вообще в человеческих силах. Наконец, для полной надежности полномасштабная модель самолета испытывается на стендах до разрушения.

За последние годы было разработано лишь несколько новых моделей самолетов, так что современные данные статистически недостоверны. Однако, когда самолеты были проще и дешевле, сравнительно большое число моделей разрабатывалось по крайней мере до стадии опытного образца. В Англии между 1935 и 1955 гг. было построено и испытано на прочность около ста типов самолетов. Поэтому результаты, полученные в этот период, позволяют делать статистически достоверные выводы.

Естественно, что величина требуемой прочности зависит от размеров и назначения самолета. Однако можно сказать, что каждое конструкторское бюро стремится к такой прочности, при которой самолет разрушится только при нагрузке, составляющей 120% от предельной эксплуатационной нагрузки [121] .

121

Лишние 20% требуются, как утверждают авиационные авторитеты, из-за колебаний качества материалов и технологии сборки.

Если бы проектирование конструкций хоть сколько-нибудь походило на точную науку, можно было бы ожидать, что результаты различных испытаний, нанесенные на график, или гистограмму, тесно соберутся вокруг величины, равной 120% от расчетной нагрузки, с очень небольшим разбросом. Другими словами, результаты должны изображаться узким "нормальным распределением", примерно таким, как показано на рис. 153. Однако известно, что в жизни ничего подобного не происходит. Реальная гистограмма скорее похожа на рис. 154.

Рис. 153. Ожидаемое статистическое распределение величины разрушающей нагрузки самолета (схематическая диаграмма).

Рис. 154. Действительное распределение прочности самолетов, испытанных на разрушение в течение 1935-1955 гг. (весьма приближенно).

Экспериментальная прочность оказывается почти равномерно распределенной между 50 и 150% от требуемой расчетной нагрузки. Поэтому можно утверждать, что даже наиболее выдающиеся конструкторы могут ошибиться в предсказании прочности самолета в 2-3 раза. Некоторые из испытанных самолетов имели меньше половины нужной прочности; некоторые были слишком прочны и поэтому оказались значительно тяжелее, чем могли бы быть.

Что касается кораблей, то, оказывается, для них вообще не существует данных, на которые можно было бы опереться, так как корабли почти никогда не подвергались испытаниям на разрушение в лабораторных условиях. Поэтому невозможно сказать, хорошо или плохо делают свою работу конструкторы кораблей, по крайней мере в отношении расчетов на прочность. Однако, как мы видели в гл. 4, число аварий, вызванных конструктивными недостатками судов, весьма значительно, и в настоящее время количество катастроф на тонно-милю, по-видимому, растет.

Поделиться:
Популярные книги

Смерть может танцевать 4

Вальтер Макс
4. Безликий
Фантастика:
боевая фантастика
5.85
рейтинг книги
Смерть может танцевать 4

Бездомыш. Предземье

Рымин Андрей Олегович
3. К Вершине
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Бездомыш. Предземье

Я не дам тебе развод

Вебер Алиса
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Я не дам тебе развод

Внешники

Кожевников Павел
Вселенная S-T-I-K-S
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Внешники

Тринадцатый II

NikL
2. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый II

Возвышение Меркурия. Книга 12

Кронос Александр
12. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 12

Черный Маг Императора 5

Герда Александр
5. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 5

Паладин из прошлого тысячелетия

Еслер Андрей
1. Соприкосновение миров
Фантастика:
боевая фантастика
попаданцы
6.25
рейтинг книги
Паладин из прошлого тысячелетия

Он тебя не любит(?)

Тоцка Тала
Любовные романы:
современные любовные романы
7.46
рейтинг книги
Он тебя не любит(?)

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Гарем вне закона 18+

Тесленок Кирилл Геннадьевич
1. Гарем вне закона
Фантастика:
фэнтези
юмористическая фантастика
6.73
рейтинг книги
Гарем вне закона 18+

Счастье быть нужным

Арниева Юлия
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Счастье быть нужным

Девяностые приближаются

Иванов Дмитрий
3. Девяностые
Фантастика:
попаданцы
альтернативная история
7.33
рейтинг книги
Девяностые приближаются

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2