Космонавты Сталина. Межпланетный прорыв Советской Империи
Шрифт:
Научно-технический уровень Фридриха Цандера все возрастал. Переломным стал день 18 сентября 1912 года, когда он в своей рукописи сформулировал ряд важных положений.
«Я хочу попытаться доказать, – начинает он свою работу, – что, даже используя известные в настоящее время топлива, космический аппарат сможет улететь далеко за пределы Земли.»
Расчеты, проведенные без учета аэродинамического сопротивления, показали, что выгодно сразу сжигать все топливо. Однако этот путь закрыт: большие перегрузки могут раздавить ракету. Стремясь, с одной стороны, выйти из этого затруднения, а с другой – обеспечить, по возможности, большую эффективность использования запасов топлива на борту, Цандер приходит к весьма плодотворной идее об отбрасывании ставших ненужными ракетных ступеней. Эта перспективная концепция была высказана им раньше
28 мая 1914 года Цандер блестяще защитил дипломную работу и 31 июля получил диплом об окончании Рижского политехнического института. За время, проведенное в этом институте, он превратился в исследователя, способного самостоятельно ставить и решать сложные научные задачи. Диплом с отличием давал ему право самостоятельно выбрать место работы, и он устроился на Рижском заводе «Проводник» – гигантском по тому времени предприятии резиновой промышленности. Позже в одной из своих автобиографий ученый объяснит выбор стремлением изучить производство и свойства резины, которая, по его мнению, будет «играть большую роль при изготовлении воздухонепроницаемых одежд и т. п. необходимых для межпланетных путешествий предметов.»
В ходе Первой мировой войны к лету 1915 года линия фронта приблизилась к Риге. Началась эвакуация промышленных предприятий в глубь России, и вместе с заводом «Проводник» Цандер переехал в Москву, с которой связана вся его последующая деятельность.
Несмотря на большую занятость по основной работе, он решил все же продолжить свои космические исследования. В 1915-1917 годах он вырастил на древесном угле горох, капусту и другие овощи. Это были опыты по «оранжерее авиационной легкости» (прообраз системы жизнеобеспечения). Выбор древесного угля в качестве почвы был продиктован его существенно меньшим удельным весом по сравнению с землей, а также тем, что он хорошо впитывает «всякие выделения» и тем самым «может держать воздух в оранжерее довольно чистым.»
Эти работы Цандера были продолжением его исследований по проблемам жизнеобеспечения, начатых еще в 1907 году. В одной из тетрадей того времени записано:
«Вещества, поглощающие углекислоту и другие возникающие газы. Регенерация кислорода. Переработка отходов: садик в космическом корабле?..»
Фридрих Артурович Цандер не был коммунистом и принял революцию довольно равнодушно. Позднее, однако, он определил свое политическое кредо так: «Сочувствую коммунизму.» В автобиографии вновь повторяет: «Сочувствую коммунизму с 1911 года.» Так или иначе, но Цандер был фанатиком своего дела, и смена исторических вех волновала его мало, главное – чтобы не препятствовали достижению поставленной цели. Для него Марс был даже не утопией, для него Марс был смыслом и сутью жизни.
Космические увлечения Цандера уже мешали основной работе на заводе «Проводник.» Стремясь как-то разрешить это противоречие, ученый в феврале 1919 года перешел на Госавиазавод № 4 (бывший завод «Мотор», эвакуировавшийся в Москву из Риги). Здесь он в период 1919-1922 годов участвовал в создании авиационных двигателей «М-11», «М-15», «М-26.» В свободное же время Цандер продолжал заниматься различными вопросами космонавтики, разрабатывая при этом проект межпланетного корабля-аэроплана и двигателя к нему.
В конце декабря 1921 года состоялась первая Московская губернская конференция изобретателей. На подсекции двигателей машиностроительной секции этой конференции Цандер выступил с докладами о проекте своего нефтяно-кислородного поршневого двигателя высокого давления и о космическом корабле-аэроплане.
На конференции доклад Цандера был оценен положительно, что очень его воодушевило. Он обратился к дирекции завода с просьбой дать ему годовой отпуск на разработку корабля-аэроплана. Коллектив завода его поддержал. На общем собрании постановили отчислять процент от заработка на этот фантастический проект.
15 июля 1922 года Цандер, отбросив последние сомнения, засел за чертежи космического самолета. Уже через полгода, с 10 февраля по 6 апреля 1923 года, Фридрих Артурович выпустил небольшую по объему, но емкую по содержанию работу «Описание межпланетного корабля системы Ф. А. Цандера, инженера-технолога.» Его проект был весьма оригинален и коренным образом отличался от работ других пионеров ракетно-космической техники.
Основные идеи, заложенные в проекте корабля-аэроплана, были опубликованы Цандером в журнале «Техника и жизнь» в 1924 году в статье «Перелеты на другие планеты.»
В самом общем виде этот проект выглядит так. Межпланетный корабль Цандера служил фюзеляжем большого самолета и, кроме того, снабжался дополнительно небольшими крыльями, предназначенными для спуска. При полете в низших, более плотных слоях атмосферы в качестве силовой установки должен был служить либо поршневой двигатель особой конструкции, работавший на бензине и жидком кислороде, либо воздушно-реактивный двигатель, использовавший в качестве окислителя кислород окружающего воздуха.
При достижении же разреженных слоев атмосферы должны были включаться жидкостные ракетные двигатели, а ставшие ненужными части большого самолета, изготовленные из металлов с высокой теплотворной способностью, втягивались в корпус и расплавлялись с тем, чтобы использоваться в качестве дополнительного горючего. Для спуска на Землю или другие планеты, обладающие атмосферой, служили добавочные малые крылья, дававшие возможность совершать посадку без каких-либо затрат горючего.
Вот описание межпланетного космического корабля на основе аэроплана с жидкостным ракетным двигателем и сжигаемыми частями, приведенное в одной из работ Цандера:
"На чертеже(...) дана разработанная мною схема аэроплана, у которого наружные части могут втягиваться при помощи конических барабанов с образующей соответственной формы, на которые наматываются тросы, втягивающие секции крыльев и все остальные части в сосуд для расплавления и использования в качестве горючего. Ввиду того, что пути отдельных частей составляют в среднем не больше 5-8 м, барабаны выходят малыми; части аэроплана, которыми при этом можно воспользоваться, мною были до некоторой степени исследованы и рассчитаны на крепость; оказывается, что такой аэроплан мог бы взять в счет веса разбираемых соединений с собою приблизительно лишь на 10% от общего веса аэроплана меньше жидкого горючего, чем обыкновенный аэроплан. Крылья аэроплана состоят из отдельных секций, находящихся в особой раме; они занижают наибольшую площадь из тех (частей), которые подлежат перемещению; но в некоторых конструкциях аэропланов для увеличения скорости полета площадь крыльев может уменьшаться во время полета до У части нормальной величины, так что произведенное здесь перемещение – только один шаг вперед. Остальные части: рули большого аэроплана и высокую подставку втягивать, по моим подсчетам, уже нетрудно. К концу полета от аэроплана может оставаться только корпус; на нем маленькие крылья(...) и маленькие рули. Некоторые части корпуса также могут еще быть, в случае необходимости, после значительного уменьшения веса корабля использованы в качестве горючего.(...) Схемы складывания и втягивания частей, а также и порядок производства этих работ могут быть самыми разнообразными, и здесь представляется изобретательству еще широкое поле. Начинать сжигание надо с наименее необходимых и наиболее дешевых частей. Во многих случаях может потребоваться сжигание лишь небольшого количества частей, а не всех имеющихся. Необходимо стремиться к наибольшей простоте и дешевизне сжигаемых деталей. По мере усовершенствования количество сжигаемых частей будет уменьшаться, но пока идет вопрос о «завоевании» межпланетного пространства, цена одного аэроплана будет играть лишь весьма незначительную роль.
Другие методы для отлета с земного шара еще не достигают цели, а при предложенном здесь методе можно себе легко представить окончательный вес опорожненного летательного аппарата, равным лишь одной сотой части полного веса, т. е. порожний летательный аппарат будет получать тепловую энергию с веса, который в 99 раз больше его веса. Это при рассмотренных выше конструкциях реактивных двигателей дает полную гарантию для достижения межпланетных скоростей."