Курс общей астрономии
Шрифт:
§ 25. Календарь
Система счета длительных промежутков времени называется календарем. За многовековую историю человечества было разработано (и использовалось) много различных систем календарей. Но все календари можно разделить на три главных типа: солнечные, лунные и лунно-солнечные. В основе солнечных календарей лежит продолжительность тропического года, в основе лунных календарей – продолжительность лунного, или синодического, месяца, лунно-солнечные календари основаны на обоих этих периодах. Современный календарь, принятый в большинстве стран, является солнечным календарем. Примером лунного календаря является магометанский календарь, лунный год которого состоит из 12 лунных месяцев и содержит 354 или 355 средних солнечных суток. В еврейском лунно-солнечном календаре год состоит то из 12 месяцев (354 дня), то из 13 месяцев (384 дня). Кроме того, есть годы «недостаточные» (353 дня и 383 дня) и «избыточные» (по 355 и по 385 дней). Основной единицей меры времени солнечных календарей, как уже было сказано, является тропический год. Продолжительность тропического года в средних солнечных сутках равна 365,2422 (365d5h48m46s). При составлении солнечного календаря необходимо выполнить два условия: 1) продолжительность календарного года, в среднем за несколько лет, должна быть как можно ближе к продолжительности тропического года; 2) календарный год должен содержать целое число суток, так как неудобно было бы начинать один год ночью, другой – утром, третий – вечером и т.д. В юлианском календаре (старый стиль),
– 28. Таким образом, продолжительность года в юлианском календаре в среднем за 4 года равна 365,25 средних солнечных суток, т.е. календарный год длиннее тропического всего лишь на 0,0078 суток. Счет времени юлианскими годами за 128 лет даст расхождение со счетом тропическими годами приблизительно в 1 сутки, а за 400 лет – около 3 суток (например, день весеннего равноденствия через 400 лет по юлианскому календарю наступит на три дня раньше). Расхождение это практического значения не имеет и юлианским календарем пользовались все европейские страны около 16 столетий. Григорианский календарь (новый стиль) возник в результате реформы юлианского календаря, произведенной в 1582 г. римским папой Григорием XIII из религиозных соображений. Дело в том, что указанное выше небольшое расхождение юлианского календаря со счетом тропическими годами оказалось неудобным для церковного летосчисления. По правилам христианской церкви праздник пасхи должен был наступать в первое воскресенье после весеннего полнолуния, т.е. первого полнолуния после дня весеннего равноденствия. В год, когда было установлено это правило на Никейском Соборе (325 г, н.э.), день весеннего равноденствия по юлианскому календарю приходился на 21 марта. В 1582 г., т.е. через 1257 лет он стал приходиться уже на 11 марта. Этот переход дня весеннего равноденствия (за 128 лет на одни сутки) на более ранние даты вносил путаницу и неопределенность в определение дня пасхи и других христианских праздников. Реформа календаря, произведенная по проекту итальянского математика и врача Лилио, предусматривала, во-первых, возвращение календарной даты 21 марта на день весеннего равноденствия и, во-вторых, изменение в правиле счета простых и високосных лет с целью уменьшения расхождения со счетом тропическими годами. Поэтому в булле папы Григория XIII имелись два принципиальных пункта: 1) после 4 октября 1582 г. было предписано считать не 5, а 15 октября. 2) не считать в дальнейшем високосными те годы столетий, у которых число сотен не делится без остатка на 4 (1700, 1800, 1900, 2100 и т.д.). Первым пунктом этого постановления устранялось расхождение в 10 суток юлианского календаря со счетом тропическими годами, накопившееся с 325 г., и день весеннего равноденствия в следующем году наступил снова 21 марта. Вторым пунктом продолжительность календарного года в среднем за 400 лет устанавливалась равной 365,2425 средних солнечных суток. Таким образом, средний календарный год стал длиннее тропического всего на 0,0003 суток и счет времени по григорианскому календарю и тропическими годами даст расхождение в 1 сутки только лишь через 3300 лет. Поэтому дальнейшее совершенствование григорианского календаря в этом направлении нецелесообразно. Григорианский календарь был введен в большинстве западных стран в течение XVI-XVII вв. В России перешли на новый стиль только в 1918 г. В этом году, по декрету Советского правительства, вместо 1 февраля стали считать 14 февраля, так как расхождение юлианского календаря со счетом тропическими годами к 1918 г. составило уже 13 суток. Это различие в 13 суток будет сохраняться до 15 февраля 2100 г. по старому стилю, или до 28 февраля 2100 г. по новому стилю. После этой даты оно увеличится на одни сутки и станет равным 14 суткам. Начало календарного года (Новый год) понятие условное. В прошлом в некоторых странах Новый год начинался и 25 марта, и 25 декабря и в другие дни. В России, например, до XV в. первым днем года считали 1 марта, а с XV в. до 1700 г. – 1 сентября. И только постепенно за начало календарного года стали повсеместно считать 1 января, как и при введении юлианского календаря в 46 г. до н.э. Условным является и выбор начала счета годов, т.е. установление эры. В прошлом существовало до 200 различных эр, связанных либо с реальными событиями (возведением на престол монархов, войнами, олимпиадами), либо с легендарными (основание Рима), а чаще всего религиозными событиями («сотворение мира», «всемирный потоп» и т.п.). Начало счета годов от «рождества Христова» было предложено ученым монахом Дионисием в 525 г. н.э. (в 1284 г. от «основания Рима»). Без всяких доказательств он объявил, что Христос родился 532 года назад, и поэтому следующие годы стали нумероваться как 533, 534, 535 и т.д. от «рождества Христова». Таким образом, наша эра является такой же условной, как и эра «от сотворения мира», и ведется она от такого же нереального события. Монах же Дионисий выбрал 532 года потому, что праздник пасхи через этот период снова
приходится на те же даты. Действительно, 532 = 4 ґ 7 ґ 19, где 4 – период високосных лет, 7 – число дней недели, а 19 – число лет, через которые лунные фазы приходятся опять на те же календарные числа (метонов цикл). Установление двенадцати месяцев в году и семи дней в неделе, хотя и имеет астрономическое обоснование, но, по сути дела, также является условным и сохраняется до сих пор по традиции. Можно придумать (и придуманы) календарные системы еще более точные, чем григорианский календарь. Но так как точность последнего более чем достаточна, то в изменении средней продолжительности календарного года (т.е. в изменении правила счета високосных годов) нет необходимости. Желательна лишь реформа в распределении дней по месяцам. В григорианском календаре месяцы имеют различную продолжительность – от 28 до 31 дня. Это неудобно. Такое же неудобство имеют и кварталы года. Предложено несколько проектов реформы григорианского календаря, предусматривающих устранение или уменьшение этих недостатков. Один из них, по-видимому самый простой, заключается в следующем. Все кварталы года имеют одинаковую продолжительность по 13 недель, т.е. по 91 дню. Первый месяц каждого квартала содержит 31 день, остальные два – по 30 дней. Таким образом, каждый квартал (и год) будет начинаться всегда в один и тот же день недели. Но так как 4 квартала по 91 дню содержит 364 дня, а год должен содержать 365 или 366 дней (високосный), то между 30 декабря и 1 января вставляется день вне счета месяцев и недель – международный нерабочий день Нового года. А в високосном году такой же нерабочий день, вне счета месяцев и недель, вставляется после 30 июня. Однако вопрос о введении нового календаря может быть решен только в международном масштабе.
§ 26. Юлианские дни
Вычитанием более ранней даты одного события из более поздней даты другого, данных в одной системе летосчисления, можно вычислить число суток, прошедших между этими событиями. При этом необходимо учитывать число високосных годов; при больших промежутках времени вычисления могут представить некоторые неудобства и дать неуверенность в результатах. Поэтому задача о числе суток, прошедших между двумя заданными датами в астрономии (например, при исследовании переменных звезд), удобнее решается с помощью юлианского периода, или юлианских
§ 27. Линия перемены даты
При счете времени календарными сутками необходимо условиться, где (на каком меридиане) начинается новая дата (число месяца). По международному соглашению линия перемены даты (демаркационная линия) проходит в большей своей части по меридиану, отстоящему от гринвичского на 180°, отступая от него к западу – у островов Врангеля и Алеутских, к востоку – у оконечности Азии, островов Фиджи, Самоа, Тонгатабу, Кермадек и Чатам. Необходимость установления линии перемены даты вызвана следующими соображениями. При кругосветном путешествии с запада на восток путешественник проходит пункты, где часы, идущие по местному (или поясному) времени, показывают все большее время по сравнению с местным (поясным) временем пункта отправления путешественника. Постепенно переводя стрелки своих часов вперед, к концу кругосветного путешествия путешественник насчитывает одни лишние сутки. И наоборот, при кругосветном путешествии с востока на запад – одни сутки теряются. Во избежание связанных с этим ошибок в счете дней и установлена линия перемены даты. К западу от линии перемены даты число месяца всегда на единицу больше, чем к востоку от нее. Поэтому после пересечения этой линии с запада на восток необходимо уменьшить календарное число, а после пересечения ее с востока на запад, наоборот, увеличить на единицу. Например, если корабль пересекает демаркационную линию 8 ноября, идя с запада на восток, то на корабле дата в полночь, следующую после пересечения этой линии, не меняется, т. е. два дня подряд датируются как 8 ноября. И наоборот, если корабль пересекает эту линию 8 ноября, идя с востока на запад, то в полночь, следующую после перехода через нее, дата меняется сразу на 10 ноября, а дня с названием 9 ноября на корабле не будет. Соблюдение этого правила исключает ошибку в счете дней, впервые допущенную участниками первой кругосветной экспедиции Магеллана в XVI в., когда они, вернувшись на родину, обнаружили, что разошлись в счете дней и чисел месяца с жителями, остававшимися на месте, ровно на одни сутки.
§ 28. Сферический треугольник и основные формулы сферической тригонометрии
Многие задачи астрономии, связанные с видимыми положениями и движениями небесных тел, сводятся к решению сферических треугольников. Сферическим треугольником называется фигура АВС на поверхности сферы, образованная дугами трех больших кругов (рис. 15).
Углами сферического треугольника называются двугранные углы между плоскостями больших кругов, образующих стороны сферического треугольника. Эти углы измеряются плоскими углами при вершинах треугольника между касательными к его сторонам. Обычно рассматриваются треугольники, углы и стороны которых меньше 180°. Для таких сферических треугольников сумма углов всегда больше 180°, но меньше 540°, а сумма сторон всегда меньше 360°. Разность между суммой трех углов сферического треугольника и 180° называется сферическим избытком s , т.е. s = РA + РB + РC – 180°. Площадь сферического треугольника s равна , где R – радиус сферы, на поверхности которой образован треугольник. Сферический треугольник, таким образом, отличается по своим свойствам от плоского, и применять к нему формулы тригонометрии на плоскости нельзя. Возьмем сферический треугольник АВС (рис. 15), образованный на сфере радиуса R и с центром в точке О. Из вершины А проведем касательные AD и АЕ к сторонам b и с до пересечения их с продолжениями радиусов ОС и 0В, лежащих в одной плоскости с соответствующей касательной. Соединив прямой точки пересечения D и Е, получим два плоских косоугольных треугольника ADE и ODE с общей стороной DE. Применяя к этим треугольникам теоремы элементарной геометрии, напишем: DE2 = OD2 + ОЕ2 – 2ODЧ ОЕ Ч cos a, DE2 = AD2 + АЕ2 – 2ADЧ АЕЧ cos A. Вычитанием второго равенства из первого получим:
2OD Ч ОЕЧ cos a = OD2 – AD2 + ОЕ2 – АЕ2 + 2AD Ч АЕ Ч cos A.(1.31)
Из прямоугольных плоских треугольников ОАЕ и ОАD следует: OD2 – AD2 = R2; OE2 – AE2 = R2; AD = R tg b ; АЕ = R tg с ;
Подставив эти соотношения в формулу (1.31) и произведя соответствующие сокращения и переносы, получим cos а = cos b cos с + sin b sin с cos A ,(1.32)
т.е. косинус стороны сферического треугольника равен произведению косинусов двух других его сторон плюс произведение синусов тех же сторон на косинус угла между ними. Формулу (1.32) можно написать для любой стороны треугольника. Напишем ее, например, для стороны b: cos b = cos с cos a + sin с sin a cos B и, подставив в нее cos сх из формулы (1.32), получим cos b = cos с (cos b cos с + sin b sin с cos A) + sin с sin a cos B. Раскрыв скобки и перенеся первый член правой части в левую, будем иметь: cos b (l – cos2 с) = sin b sin с cos с cos A + sin c sin a cos B. Заменив (1 – cos2 с) на sin2 с и сократив все на sin c, окончательно получим sin a cos В = sinc cos b – cos c sin b cos A,(1.33)
т.е. произведение синуса стороны на косинус прилежащего угла равняется произведению синуса другой стороны, ограничивающей прилежащий угол, на косинус третьей стороны минус произведение косинуса стороны, ограничивающей прилежащий угол, на синус третьей стороны и на косинус угла, противолежащего первой стороне. Формула (1.33) называется формулой пяти элементов. Ее можно написать по аналогии и для произведений sin a cos С, sin b cos A, sin b cos С, sin с cos A и sin с cos В. Решим теперь равенство (1.32) относительно cos A : Возведя обе части последнего равенства в квадрат и вычтя их из 1, получим:
или
Раскрыв скобки и разделив обе части этого выражения на sin2 а, получим Полученное выражение совершенно симметрично относительно a, b и с, и заменяя A на В, а на b или A на С и а на с, напишем откуда
(1.34) или
т.е. синусы сторон сферического треугольника пропорциональны синусам противолежащих им углов; или отношение синуса стороны сферического треугольника к синусу противолежащего угла есть величина постоянная. Три выведенных соотношения (1.32), (1.33), (1.34) между сторонами и углами сферического треугольника являются основными; из них можно получить много других формул сферической тригонометрии. Мы ограничимся выводом одной только формулы для прямоугольного сферического треугольника. Положим А = 90°; тогда sin А = 1, cos A = 0, и из формулы (1.33) получим sin a cos В = sin с cos b. Разделив обе части этого равенства на sin b и заменив на на , согласно (1.34), будем иметь: ctg B = sin c ctg b или (1.35)
т.е. отношение тангенса одного катета прямоугольного сферического треугольника к тангенсу противолежащего угла равно синусу другого катета.
§ 29. Параллактический треугольник и преобразование координат
Параллактическим треугольником называется треугольник на небесной сфере, образованный пересечением небесного меридиана, вертикального круга и часового круга светила. Его вершинами являются полюс мира Р, зенит Z и светило М. Если светило М находится в западной половине небесной сферы (рис. 16), то сторона ZP