Легкий, тяжелый, жидкий
Шрифт:
Вы, наверное, слышали название "полупроводники". Это крохотные пластиночки, без которых не сделаешь ни маленький портативный радиоприемник-транзистор, ни цветной телевизор.
Не могут обойтись без полупроводников и конструкторы различных электронных приборов. Большинство этих приборов появились лишь после того, как были открыты полупроводники.
Но для изготовления самых сложных и точных либо самых миниатюрных приборов необходимы сверхчистые металлы. Такие металлы, в составе которых было бы не больше одной частицы посторонней примеси на десять миллиардов
– Представляете, - сказал мне инженер, - достаточно одной чужой частицы, и металл уже не годен! Это все равно, что вы подошли бы к бассейну, в который налито десять тысяч бочек дистиллированной воды, и бросили бы в воду полкусочка сахару. А вам бы тогда сказали, что теперь вся вода испорчена - она стала сладкой!
Однако даже в вакуумной печи завода сверхчистых металлов, несмотря на непрерывную работу нескольких насосов, еще остается немного воздуха.
Как ты думаешь, что значит та огромная цифра, которой названа эта главка?
27 000 000 000 000 000 000 - двадцать семь квинтильонов!
Это именно столько частиц воздуха помещается в одном наперстке. Попробуй их всех оттуда выгнать!
А ведь иногда нужно выгнать воздух не из прибора величиной с наперсток и даже не из небольшой электрической печи, как на том заводе, о котором было рассказано, а создать безвоздушное пространство в гигантской стальной трубе, похожей на громадную баранку, внутри которой вполне поместилась бы городская площадь.
Такие "баранки" толщиной с двухэтажный дом можно увидеть, например, в приволжском городе Дубне или под Серпуховом близ Москвы в научных институтах, где физики изучают строение атома. Это камеры самых мощных в мире ускорителей атомных частиц.
В стальных трубах ускорителей исследователи разгоняют до небывалой скорости протоны, из которых состоят атомы, а затем ставят на их пути препятствие. Летящие с невероятной скоростью - 250 тысяч километров в секунду - протоны от удара о мишень разбиваются на еще более мелкие частицы. Исследователи фотографируют следы этих частиц на фотопленку, а затем изучают по полученным снимкам их особенности.
Но легкие протоны никогда не наберут нужной скорости, если им придется по пути сталкиваться с тяжелыми частицами воздуха. Поэтому в трубе ускорителя должно быть безвоздушное пространство.
Вот почему так натужно гудят пятьдесят мощных и сложных насосов, подключенных к трубе на всем ее протяжении. Они должны обеспечивать настолько высокое разрежение воздуха в камере ускорителя, чтобы оставшиеся в ней отдельные частицы газов не помешали протонам мчаться вперед, к мишени.
Только научившись создавать в ускорителях почти полный вакуум, ученые смогли открыть много различных мельчайших частиц, из которых состоят атомы, и еще глубже узнать строение всего нашего мира.
В БЕЗВОЗДУШНОМ ПРОСТРАНСТВЕ
Но нельзя ли найти в мире почти полный вакуум, не прибегая ни к каким насосам?
Можно! Сегодня мы знаем это совершенно точно.
Уже давно люди заметили, что чем выше поднимаешься в горы, тем труднее становится дышать - не хватает
Значит, та воздушная подушка, которая лежит над Землей, чем выше, тем менее плотна и становится все легче.
Где же кончается окутывающая Землю воздушная пелена? Где начинается подлинное безвоздушное пространство, подлинный вакуум?
Первым решился это проверить французский физик Гастон Тиссандье.
Профессор Парижского университета Тиссандье был не только ученым, но и спортсменом. Он, например, так увлекался воздухоплаванием, что нередко отменял свои лекции, чтобы совершить очередное путешествие на воздушном шаре и поглядеть на Землю сверху.
В 1870 году, во время войны Франции с Германией, немцы окружили столицу Франции сплошным кольцом войск. Ни один человек не мог пробраться из осажденного города.
И тогда Тиссандье надул свой воздушный шар, пролетел на нем над головами вражеских солдат и добрался до Норвегии. Оттуда он смог сообщить французскому командованию, каково положение в Париже и долго ли еще удастся оборонять город.
А через пять лет Тиссандье решил побывать на самой большой высоте, на какую только способен подняться воздушный шар.
Утром 15 апреля 1875 года со двора парижского газового завода стартовал аэростат. В плетеной ивовой корзине для пассажиров были три воздухоплавателя - Тиссандье и два его помощника.
Когда шар поднялся на высоту в семь километров, все трое стали задыхаться. Им не хватало воздуха. Пришлось дышать предусмотрительно взятым с собой в баллонах кислородом.
Наконец подъем прекратился. Чтобы подняться еще немного выше, исследователи постепенно выбросили за борт все лишнее - одеяла, личные вещи, даже запасные баллоны с кислородом. Они настолько увлеклись наблюдениями, что не прекращали подъема, пока не свалились без чувств на дно своей корзины.
Дольше всех держался сам Тиссандье. Он даже продолжал записывать происходящее в бортовой журнал.
Последняя запись почти неразборчивыми каракулями гласила:
"Мы спускаемся. Температура - 8 градусов. Бросаю балласт".
И последним усилием ученый сбросил остатки балласта, чтобы шар поднялся еще немного.
Но спутники ученого были уже мертвы. Высота их погубила. Да и сам он едва успел открыть клапан спуска, как потерял сознание. А ведь поднимался Тиссандье всего на восемь с половиной километров и до безвоздушного пространства, конечно, не добрался.
Как же летом 1974 года советский летчик А. Федотов поднялся на своем самолете на 36 километров 240 метров и поставил мировой рекорд высоты? Чем же он дышал?
Для этого кабины современных высотных самолетов герметизированы. Это значит, что они закрыты со всех сторон так плотно, что заполняющий их земной воздух никуда не уходит. Если же полет будет долгим или случится авария и герметизация нарушится, на этот случай у каждого летчика также есть свой запас кислорода в баллоне. Летчик наденет соединенную с баллоном маску и будет дышать этим кислородом.