Магнетизм высокого напряжения. Максвелл. Электромагнитный синтез
Шрифт:
«Единственные законы материи — те, что может изобрести наш разум, и единственные законы разума — это законы, изобретенные для него материей».
Помимо интереса к философии научного исследования, Максвелл проявлял себя и в других сферах деятельности. Он также писал множество разнообразных стихов: от переводов эпических од с латыни и греческого до стихотворений, пропитанных тонкой иронией, призванных посмешить друзей. Даже рассказывают, что ради развлечения и мести, поскольку в Тринити не разрешалось держать в комнатах собак, он вынуждал товарищей, владельцев котов, поучаствовать в специфическом исследовании. Его целью было установить высоту, с которой их любимые домашние животные способны упасть на
Постепенно эта история перешла все границы, превратившись в жестокий эксперимент, во время которого котов выбрасывали из окон колледжа. Спустя много лет Максвелл вернулся в Кембридж, а эта история все еще была там на слуху и даже обросла более ужасными подробностями, в связи с чем ему пришлось все отрицать.
В любом случае, когда Джеймс не выбрасывал котов из окна, он уделял довольно много времени окружавшим его людям. Если какому-то товарищу была нужна помощь или он просто болел и ему требовался уход, Джеймс был тут как тут. Он подбадривал тех, кто грустил, помогал новичкам, у которых были проблемы с учебой, читал вслух свои учебные конспекты каждый вечер и, кроме того, находил время писать отцу, тете Джейн и друзьям.
Подобная гиперактивность иногда чревата последствиями: в течение лета, проведенного в Суффолке, где Джеймс навещал семью друга, у него были ужасные приступы жара, из-за которых он пробыл в бреду две недели.
Летом 1854 года британский физик и химик Майкл Фарадей (1791-1867) провел самое авторитетное исследование спиритизма, особенно явления вращающихся столов, которые левитировали, двигались или наклонялись, чтобы ответить посредством стука на вопросы присутствующих. В свои 60 лет человек с бесспорно мировым именем решил определить, что может оказаться причиной такого захватывающего явления.
«Ни один тип эксперимента или способ наблюдения, которые я мог бы провести, не дал мне ни малейшего указания на какую-то особенную силу. Никакого притяжения или отталкивания... ничего, что можно приписать чему-либо, кроме как механическому давлению, оказываемому непроизвольно субъектом».
ГЛАВА 4
Изучение цвета и света
Максвелл успешно справился с испытаниями Кембриджа и понимал, что настала пора вернуться к собственным исследованиям. Пребывание в университете подарило ему уверенность, ясность мысли и отработанную методику — все это он был готов применить при решении стоявших перед ним задач. К данному периоду относится одно из самых интересных исследований Максвелла, получившее широкую известность, — теория цветов.
Благодаря ей он стал известен как физик- экспериментатор с хорошим знанием математики.
В середине XVII века молодой английский ученый захотел выяснить, почему мы видим листья деревьев зелеными, небо голубым, а хлопок белым. Для этого он смотрел прямо на Солнце до тех пор, пока цвета в его глазах не изменялись. Он так увлекся своим занятием, что ему пришлось закрыться на несколько дней в абсолютно темной комнате, пока скопления светящихся точек, которые постоянно плавали перед его глазами, не исчезли. Этим «несознательным» исследователем был великий Исаак Ньютон.
Через несколько лет он вернулся к данной теме, но уже с большей осторожностью. Модная теория того времени, распространенная в академических кругах, утверждала, что цвета — это смешение света и темноты. Существовала даже шкала, которая шла от ярко-красного (чистого белого света с минимальным количеством темноты) до темно-синего цвета, предшествующего черному, то есть абсолютному исчезновению света в полной темноте. Однако Ньютона такое объяснение не устраивало: если делать запись черными чернилами на белой бумаге, то написанное не становится цветным...
Ньютон начал исследовать то, что было известно как «знаменитый феномен цветов». Ученые использовали призму для своих работ и думали, что в ней есть что-то, ответственное за придание свету различных цветов. Проблема была в том, что они помещали экран, на который падал свет, исходящий из призмы, очень близко от нее, поэтому видели только разноцветное пятно. Ньютон отдалил экран от призмы насколько это было возможно, и... появилась радуга. Тогда он усложнил эксперимент. В экране, на который падал свет, разложенный на цвета, ученый сделал маленькую щель как раз на той высоте, где проходил зеленый пучок, и поставил позади другую призму. Ньютон выяснил, что свет, который проходит через эту вторую призму, остается зеленым. Так он доказал, что белый свет является простым смешением цветов, а единственное, что делает призма, — разделяет их. Следующим его шагом стал поиск правил, регулирующих смешение цветов. И Ньютон создал то, что сегодня известно как цветовой круг Ньютона (см. рисунок).
С помощью этой диаграммы Ньютон хотел теорию смешения цветов,согласно которой из основных цветов спектра можно образовать любой другой.
Он разделил окружность на семь дуг, по числу цветов спектра. Каждая дуга была окрашена в один из этих цветов, в то время как белый центр круга, О, представлял собой смешение всех цветов спектра (как это происходит с белым светом Солнца). Таким образом, пространство между О и окружностью представляло собой гамму ненасыщенных, тусклых цветов, которые мы наблюдаем в реальном мире. Ньютон нашел метод для вычисления хроматичности (то есть тона и чистоты) заданного цвета.
Как можно видеть на рисунке на этой странице, в центр каждой дуги Ньютон поместил маленький круг, размер (или вес) которого пропорционален числу лучей рассматриваемого цвета. Данные лучи входят в состав определенного смешения, а точка Y указывает, какой цвет составлен на основе этого смешения цветов спектра; в данном случае представлен краснооранжевый.
В заключение своего рассуждения Ньютон заметил:
«Если бы точка Yпопала на линию OD или оказалась рядом с ней, основными ингредиентами были бы красный и фиолетовый и получившийся цвет не был бы ни одним из призматических цветов [тех, что появляются при пересечении призмы лучом света], а был бы пурпурным, ближе к красному или фиолетовому; следовательно, точка Y находилась бы со стороны линии DO ближе к Е или Сив целом составной фиолетовый был бы ярче и более выражен [насыщен], чем несоставной».
Наука о цвете должна считаться, по сути, наукой о разуме.
Джеймс Клерк Максвелл
Однако Ньютон знал ограничения своего построения: была одна неудобная точка непрерывности в том месте, где сталкивались два цвета краев спектра — красный и фиолетовый. Кроме того, что произойдет, если смешать в одинаковых частях два цвета, которые находятся в местах, диаметрально противоположных друг другу? В чистом виде новый цвет попал бы в центр (О) и должен был быть белым, но, как высказался сам ученый, «это был бы не идеально белый, а некий слабый и неизвестный [разбавленный и безымянный] цвет». Он также признал, что ему не удалось произвести белый на основе двух цветов, несмотря на то что голландский физик Христиан Гюйгенс (1629-1695) утверждал, что это можно сделать, смешав синий и желтый цвета. Зато Ньютон признавал, что такое возможно при помощи «смешения трех цветов, взятых на одинаковом расстоянии от окружности». Однако он говорил о разнице между белым, который производится при смешивании некоторых из семи цветов радуги, и «белым цветом света, непосредственно идущего от Солнца»: по его мнению, это были два разных белых.