Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность
Шрифт:
Умножение – вот настоящее веселье. Чтобы не быть чужим на этом празднике жизни, вам стоит применить первое стратегическое правило чтения математических текстов: формирование мысленных образов.
Как показано на рисунке на предыдущей странице, умножение сводится к сеткам и массивам. Число 1001 можно рассматривать в качестве гигантской конструкции из кубиков: 7 в ширину, 11 в длину и 13 в высоту. Но это только начало. Вы можете представить это число как 11 слоев из 91 кубика каждый, а если вы наклоните голову, то увидите 7 слоев по 143 кубика в каждом. Все эти способы разложения числа 1001 становятся очевидны благодаря факторизации. Но почти невозможно разобрать это число без кропотливых вычислений, просто глядя на сочетание цифр.
Факторизация – это ДНК числа. Благодаря факторизации
Для типичных фанатов число – таинственная руна, символ математической магии. Они размышляют над его иррациональностью, запоминают цепочку из тысячи цифр и отмечают 14 марта День , сочетая наиболее славное искусство человечества (приготовление сладких пирогов) с наименее славным (пижонство). Для широкой же публики число – это объект одержимости и благоговейного трепета. Вокруг него сложилось нечто вроде религиозного культа.
А для математиков – это приблизительно 3.
Что до бесконечной катушки знаков после запятой, которая так пленяет профанов, то математиков это не тревожит. Они знают, что математика – нечто большее, чем точные вычисления. Это быстрая прикидка и ловкое округление. Интуиция помогает оптимизировать и упрощать. Разумное огрубление – еще одно жизненно важное стратегическое правило чтения математических текстов.
Возьмем формулу S = R^2, которую многие школьники слышат так часто, что фраза «площадь круга» вызывает у них рефлекторное желание закричать: «Пи эр квадрат!» Они как агенты глубокого внедрения с промытыми мозгами. Но что значит эта формула? Почему это так?
Ладно, забудьте о числе 3,14159. Раскрепостите сознание. Просто поглядите на геометрические фигуры: r – это радиус круга, длина отрезка; r^2 – это площадь квадрата (он изображен на чертеже). А теперь вопрос на долларов: как площадь круга соотносится с площадью этого квадрата?
Очевидно, что площадь круга больше. Но не в четыре раза больше, потому что четыре квадрата покроют не только круг, но и дополнительную часть плоскости. Кроме того, присмотревшись, вы поймете, что площадь круга немного больше, чем площадь трех квадратов.
Это именно то, что утверждает наша формула: площадь круга чуть-чуть больше, чем 3 x r^2.
Если вы хотите установить точное значение числа (почему 3,14, а не 3,19?), вам придется прибегнуть к доказательству. (Есть несколько великолепных наглядных доказательств, мое любимое заключается в том, чтобы снимать с круга слой за слоем, как будто кожицу с луковицы, и в итоге получить многоугольник [20] .) Но математики, что бы они ни доказывали, не всегда исходят из первичных принципов. Как и представители других профессий, от плотников до смотрителей зоопарка, они с радостью используют какой-нибудь инструмент, даже не зная в точности, каким образом он сконструирован, до тех пор, пока у них есть ощущение, что он работает.
20
Посмотрите милый мультфильм на эту тему: https://www.geogebra.org/m/WFbyhq9d.
«Постройте график исходя из уравнения» – знакомое домашнее задание. Я и сам его задавал. Кроме того, это зародыш порочного мифа: якобы графики являются самоцелью. На самом деле их построение не похоже на решение уравнений или выполнение операций. График – это не конечный пункт, а всегда не более чем средство.
График –
Возьмем уравнение, приведенное выше: y = 1/x^2. Здесь x и y – пара взаимосвязанных чисел. Вот несколько примеров:
Уже просматривается несколько закономерностей. Но чем лучше наши технические приемы, тем больше мы видим, и таблицы – не модный инструмент. Из бесконечных пар x – y, которые подходят нашему уравнению, таблица, как бегущая строка биржевых индексов, может показать всего лишь несколько. Нам нужен инструмент визуализации получше: математический аналог телевизионного экрана.
На сцене появляется график.
Рассматривая x и y как своего рода широту и долготу, мы преобразуем каждую неосязаемую пару чисел в нечто геометрическое – точку. Бесконечное множество точек становится непрерывной кривой линией. И тогда возникает история, рассказ о движении и изменении.
Когда x уменьшается, стремясь к нулю (1/5,1/60,1/1000…), y раздувается до немыслимых величин (25, 3600, 1 000 000…).
Если x увеличивается (20, 40, 500…), y скукоживается до микроскопических чисел (1/400,1/16 000,1/250 000…).
Когда x принимает отрицательные значения (–2, –5, –10), y остается положительным. Он никогда не спускается ниже нуля.
Ни одна из величин не может быть равна нулю.
Окей, возможно, это не самая сочная сюжетная линия, но такие умственные упражнения показывают разницу между математиком-новичком (он видит парализующий поток бессмысленных символов) и опытным математиком (он видит нечто слаженное и дружелюбное). Графики наполняют безжизненные уравнения ощущением движения.
Есть психологический феномен, известный под неприятным названием чанкинг. Это не просто способ очистить организм после чрезмерного количества пива [21] , но и мощная ментальная техника, необходимая математикам. Очередная стратегия чтения математических текстов.
Чанкинг означает, что мы интерпретируем набор разрозненных, ускользающих деталей как единое целое. Приведенное выше уравнение – хороший пример. Умелый чанкер игнорирует мелочи слева. Там x или y, 5 или 6, плюс или минус? Не знаю, без разницы. Вместо этого вы видите просто два множителя, формирующих скелет уравнения: чанк умножить на чанк равно нулю.
21
«To chunk» означает «разбивать на фрагменты», на жаргоне – «страдать рвотой». К сожалению, пришлось отказаться от игры слов, потому что этот термин уже вошел в русский язык. Простейший пример чанкинга – разделение телефонного номера на несколько частей. – Прим. пер.