Математика с дурацкими рисунками. Идеи, которые формируют нашу реальность
Шрифт:
«Бесполезная» геометрия становится чертовски полезной.
Мой любимый пример касается логики как таковой. Ранние философы вроде Аристотеля разработали логическую символику («если p, то q») как руководство научного мышления. Потом на нее покусились математические теоретики и превратили логику в нечто необычное и абстрактное. Реальность улетучилась. В XX веке люди вроде Бертрана Рассела сочиняли фолианты с латинскими заголовками [30] с целью «доказать», исходя из элементарных предпосылок, что 1 + 1 = 2. Что может быть более бесполезным, более безнадежным? [31]
30
Трехтомная
31
Эта история изложена в графическом романе: Apostolos Doxiadis et al., Logicomix: An Epic Search for Truth (New York: Bloomsbury, 2009). [Доксиадис А., Пападимитриу Х. Логикомикс. Поиск истины. – М.: Карьера Пресс, 2019.]
Одна мама пилила сына-логика: «Солнышко, к чему тебе вся эта абстрактная математика? Почему бы не заняться чем-нибудь полезным?» [32]
Маму звали Этель Тьюринг. Вскоре выяснилось, что ее сын Алан все-таки на что-то годен: он изобрел логическую машину, которую мы теперь называем «компьютер».
Я не могу винить ее за скептицизм. Кто бы мог подумать, что исследование логических систем, которое вел ее сын, определит облик нового столетия? Сколько примеров я ни узнавал, этот исторический цикл перехода полезного в бесполезное и снова в полезное остается для меня чудом и тайной.
32
James Gleick, The Information: A History, a Theory, a Flood (New York: Knopf Doubleday, 2011). Блестящая книга. [Глейк Дж. Информация. История. Теория. Поток. – М.: Corpus, 2013.]
Мое любимое описание этого феномена – чеканная фраза физика Юджина Вигнера: «Непостижимая эффективность математики» [33] . В конце концов, бактерии не знают теорию узлов, так почему они следуют ее законам? Пространственно-временной континуум не изучал гиперболическую геометрию, почему тогда ее теоремы выполняются так безупречно?
Я читал философов, которые пытались ответить на эти вопросы, но, на мой взгляд, их тезисы умозрительны и противоречивы, и никто из них не смог умерить мое изумление.
33
Eugene Wigner, “The Unreasonable Effectiveness of Mathematics in the Natural Sciences. Richard Courant lecture in mathematical sciences delivered at New York University, May 11, 1959”, Communications on Pure and Applied Mathematics 13 (1960): 1–14. Сногсшибательное эссе. [Статья Юджина Вигнера «Непостижимая эффективность математики в естественных науках» в переводе В. А. Белоконя и В. А. Угарова была опубликована в журнале «Успехи физических наук» в 1968 году (Т. 94, С. 535–546;. – Прим. науч. ред.]
Итак, как лучше понять взаимоотношения между поэтессой, которую мы называем Математика, и искателем приключений, известным как Естествознание? Возможно, мы должны рассматривать их связь как симбиоз двух весьма разных существ. Например, птица, поедающая насекомых, примостилась на спине носорога. У носорога не зудит кожа. Птица удовлетворяет аппетит. И они оба счастливы.
Если вы захотите изобразить математику, нарисуйте изящное существо, оседлавшее серую морщинистую тушу.
< image l:href="#"/>Глава 5
Хороший математик против великого математика
Развенчивать мифы невероятно весело. Просто посмотрите на беззаботные взрывы смеха и улыбки до ушей ведущих телешоу «Разрушители легенд» [34] , и вы увидите: это карьера с высокой степенью удовлетворенности от работы.
Гораздо сложнее вносить поправки в мифы.
34
MythBusters – научно-популярная телепередача на канале Discovery (2003–2016). – Прим. пер.
35
Карл Фридрих Гаусс (1777–1855), которого называли королем математиков, погрузился в тяжелую депрессию, когда не смог довести до конца вычисления по теории возмущений орбиты астероида Паллада в начале XIX века. Это состояние усугубила смерть его жены и новорожденного сына. См.: Гиндикин С. Рассказы о физиках и математиках. – М.: МЦНМО, 2001 . – Прим. пер.
Перед тем как завершить этот раздел, я дам еще одно, последнее объяснение того, как думают математики, – шанс провести ревизию и прокомментировать некоторые популярные мифы. Как большинство мифов, они опираются на правду. И, как большинство мифов, они пренебрегают сомнениями и пробуксовкой на пути к осмыслению, которое делает нас людьми – и математиками.
Пару лет назад, когда я жил в Англии, у меня был ученик по имени Кори. Он напоминал мне нежноголосого 12-летнего Бенджамина Франклина: молчаливый, проницательный, длинные рыжие волосы, круглые очки. Я легко мог представить, как он изобретает бифокальные линзы.
Кори вкладывал душу в каждое домашнее задание, находил ясные связи между темами и собирал свои тетрадки с такой тщательностью и терпением, что я всегда опасался, как бы он не опоздал на следующий урок. Неудивительно, что на первой большой контрольной в ноябре Кори расщелкал все задачи.
Вернее, все задачи, на которые у него хватило времени.
Прозвенел звонок, но последняя четверть бланка ответов все еще была пуста. Он набрал чуть больше 70 баллов из 100 и явился ко мне на следующий день с нахмуренным лбом.
– Сэр, – сказал он (поскольку Англия – поразительная страна, где даже к нескладным 29-летним учителям обращаются с большим почтением), – почему время на решение контрольных ограничено?
Я полагаю, что честность – наилучшая политическая линия.
– Не потому, что скорость очень важна. Мы просто хотим удостовериться, что школьники могут справиться с контрольной сами, без посторонней помощи.
– Так почему нельзя работать после звонка?
– Ну, если бы я держал весь класс в заложниках весь день, другие учителя могли бы взбелениться. Они хотят, чтобы вы знали физику и географию, потому что ностальгически привязаны к реальности.
Я осознал, что никогда не видел Кори в таком состоянии: зубы сжаты, глаза потускнели. Всем своим видом он излучал разочарование.
– Я мог решить больше задачек, – сказал он. – У меня просто кончилось время.
– Я знаю, – кивнул я.
Больше нечего было сказать.
Намеренно или нет, школьная математика посылает громкий, четкий сигнал: «Скорость – это всё». Контрольные нужно решать быстро. Чем раньше сдашь контрольную, тем быстрее приступишь к домашней работе. Вы только посмотрите, как заканчиваются уроки – по звонку, как раунд извращенной принудительной викторины по логарифмам. Математика превращается в гонку, успех становится синонимом скорости.
Все это в высшей степени глупо.
Скорость имеет одно баснословное преимущество: она экономит время. Но математика требует глубокого проникновения в суть поставленной задачи, подлинного понимания, элегантного подхода. Вы не достигнете ничего из вышеперечисленного, перемещаясь со скоростью 1000 км/ч. Вы лучше разберетесь в математике, если будете думать тщательно, а не на скорую руку, и вы лучше изучите ботанику, рассматривая каждую травинку, а не скача как одержимый через пшеничное поле.