Математика. Утрата определенности.
Шрифт:
В своей третьей работе по математическому анализу — «Рассуждения о квадратуре кривых» (1676) — Ньютон еще раз заявил, что отказывается от бесконечно малых величин (в конечном счете неделимых), и критически отозвался об отбрасывании членов в соотношении (3), содержащих множитель h,поскольку «в математике не следует пренебрегать даже самыми малыми ошибками». После этих предварительных замечаний Ньютон дал новое объяснение понятия «флюксия»: «Флюксии, когда приращения флюэнт [переменных] возникают во все большем числе, отличаются сколь угодно мало и сами сколь угодно малы, и если говорить точно, то они пропорциональны возникающим приращениям…». Разумеется, пользы от столь смутных объяснений было немного. Что же касается метода вычисления флюксией, то с логической точки зрения третья работа Ньютона была столь же малообоснованной, как и первая. Производную Ньютон вычислял, отбросив все члены в (2), содержавшие hв
Несколько утверждений относительно флюксий Ньютон высказал в своем главном труде «Математические начала натуральной философии» (1-е изд., 1687). От неделимых в пределе величин он отказался в пользу «исчезающе делимых величин», т.е. величин бесконечно делимых. В первом и в третьем изданиях «Начал» Ньютон утверждал:
Предельные отношения исчезающих количеств не суть отношения пределов этих количеств, а суть те пределы, к которым при бесконечном убывании количеств приближаются отношения их и к которым эти отношения могут подойти ближе, нежели на любую наперед заданную разность, но которых превзойти или достигнуть на самом деле не могут, ранее чем эти количества уменьшатся бесконечно.
Хотя приведенный нами отрывок не отличается особой ясностью, это наиболее ясное из всех утверждений Ньютона о флюксиях. Именно здесь Ньютон употребил ключевое слово «пределы» (его терминология была иной), хотя и не стал углубляться в анализ этого понятия.
Ньютон, несомненно, сознавал неудовлетворительность предложенного им объяснения флюксии и, должно быть, с отчаяния обратился к ее физическому смыслу. Вот что говорится об этом в «Началах».
Делают возражение, что для исчезающих количеств не существует «предельного отношения», ибо то отношение, которое они имеют ранее исчезания, не есть предельное, после же исчезания нет никакого отношения. Но при таком и столь же натянутом рассуждении окажется, что у тела, достигающего какого-либо места, где движение прекращается, не может быть «предельной» скорости, ибо та скорость, которую тело имеет ранее, нежели оно достигло этого места, не есть «предельная», когда же достигло, то нет скорости. Ответ простой: под «предельною» скоростью надо разуметь ту, с которою тело движется не перед тем, как достигнуть крайнего места, где движение прекращается, и не после того, а когда достигает, т.е. именно ту скорость, обладая которой тело достигает крайнего места и при которой движение прекращается. Подобно этому, под предельным отношением исчезающих количеств должно быть разумеемо отношение количеств не перед тем, как они исчезают, и не после того, но при котором исчезают.
Поскольку результаты его математических исследований были физически вполне осмысленными, Ньютон не уделял особого внимания логическому обоснованию математического анализа. В «Началах» он пользовался геометрическими методами и приводил теоремы о пределах в их геометрической формулировке. Позднее Ньютон признал, что при выводе теорем в «Началах» он прибегал к математическому анализу, он формулировал их геометрически, чтобы придать своим рассуждениям ту степень достоверности, которой отличались доказательства древних. Разумеется, его геометрические доказательства отнюдь не были строгими. Ньютон слепо верил в непогрешимость евклидовой геометрии, но ничто не свидетельствовало о том, что евклидова геометрия могла хоть в какой-то мере помочь в обосновании математического анализа.
Несколько иной подход к математическому анализу предложил Лейбниц (см. [141]). По его мнению, величины, обозначенные нами hи k(Лейбниц обозначал их символами dxи dy), убывая, достигают «исчезающе малых», или «бесконечно малых», значений. На этой стадии hи kотличны от нуля, но меньше любого заданного числа. Следовательно, любыми степенями h, например h 2или h 3,заведомо можно пренебречь. Получающееся при этом отношение h/kи есть та самая величина, которую требовалось найти, т.е. производная, которую Лейбниц обозначил dy/dx.
Геометрический смысл величин hи kпо Лейбницу заключался в следующем. Пусть Pи Q— «бесконечно близкие» точки на кривой. Тогда dx— разность их абсцисс, a dy— разность их ординат (рис. 6.4). Кроме того, касательная к кривой в точке Tсовпадает с дугой PQ.Следовательно, отношение dy/dxзадает угол наклона касательной. Треугольник PQR,называемый характеристическим,не являлся изобретением Лейбница: им пользовались Паскаль и Барроу, труды которых были известны Лейбницу. Лейбниц считал, что треугольник PQRподобен треугольнику STU, — и пользовался этим подобием для доказательства некоторых утверждений относительно dy/dx.
Рис. 6.4.Характеристический треугольник PQR.
Лейбниц широко использовал понятие интеграла и независимо пришел к идее суммирования элементарных прямоугольников, на которые разбивается криволинейная трапеция [ср. (7) ]. Но переход от суммы конечного числа прямоугольников к сумме бесконечно большого числа прямоугольников был не вполне понятен. По утверждению Лейбница, сумма элементарных прямоугольников превращалась из конечной в бесконечную, когда ширина hпрямоугольников становилась «бесконечно малой». Для бесконечной суммы бесконечно малых величин — интеграла— Лейбниц ввел специальное обозначение ydx.Он научился вычислять такие интегралы и независимо открыл основную теорему интегрального исчисления, утверждающую, что вычисление интеграла представляет собой операцию, обратную нахождению производной (антидифференцирование). После примерно двенадцати лет упорной работы над своим вариантом математического анализа Лейбниц опубликовал первую работу о новом исчислении в журнале Acta eruditorum(«Журнал ученых») за 1684 г. Наиболее выразительный отзыв на эту работу Лейбница дали его друзья, братья Якоб и Иоганн Бернулли, заявив, что это «не столько загадка, сколько объяснение».
Идеям Ньютона и Лейбница недоставало ясности, и критики не замедлили воспользоваться этим. Ньютон не снисходил до ответа на критические замечания, тогда как Лейбниц считал своим долгом ответить на возражения критиков. Его попытки объяснить в частной переписке свое понимание бесконечно малых величин столь многочисленны, что для подробного разбора их понадобилось бы немало страниц. В статье, опубликованной в томе Acta eruditorumза 1689 г., Лейбниц утверждал, что бесконечно малые — не действительные, а некие фиктивные числа. Но эти фиктивные, или мнимые, числа подчиняются тем же правилам арифметики, что и обычные числа.
В той же статье Лейбниц, исходя из геометрических соображений, доказывал, что высший дифференциал (бесконечно малая более высокого порядка, чем первый), например (dx) 2,относится к низшему дифференциалу dx,как точка к прямой, и что dxотносится к x,как точка к земному шару или радиус Земли к радиусу небесной сферы. Отношение двух бесконечно малых Лейбниц мыслил как отношение двух неопределенностей или бесконечно малых величин, которое, однако, можно выразить через конечные величины. Например, геометрически отношение dy к dxесть не что иное, как отношение ординаты к подкасательной ( TU к SUна рис. 6.4 ).
Одним из критиков, выступивших против Лейбница, был Бернгардт Нювентидт (1654-1718). Ответ Лейбница ему был опубликован в Acta eruditorumза 1695 г. Лейбниц обрушился на ревнителя математической строгости, справедливо заметив, что чрезмерная скрупулезность не должна отвращать нас от плодов нового открытия. Лейбниц утверждал, что его метод отличается от метода Архимеда только терминологией, и считал, что избранная им терминология в большей мере отвечает искусству совершать открытия. Термины «бесконечная» и «бесконечно малая» относятся к величинам, которые можно считать сколь угодно большими или сколь угодно малыми, когда требуется показать, что совершаемая ошибка меньше «наперед заданного числа» (т.е. что ошибки нет). Предельные величины, т.е. все эти «действительные бесконечности» и «бесконечно малые», можно использовать как удобный рабочий инструмент в вычислениях, подобно тому как алгебраисты с превеликой пользой используют мнимые корни. (Напомним, что во времена Лейбница мнимые корни имели весьма шаткий статус.)