Математика. Утрата определенности.
Шрифт:
Для «доказательства» правильности своего принципа Понселе воспользовался теоремой евклидовой геометрии, согласно которой произведения отрезков пересекающихся хорд равны (на рис. 7.3 ab = cd). Понселе заметил, что, когда точка пересечения хорд сдвигается во внешнюю по отношению к окружности область, равными становятся произведения секущих и их внешних отрезков (на рис. 7.4 ab = cd).
Рис. 7.3.Теорема о пересекающихся хордах.
Рис. 7.4.Теорема
Никаких доказательств не требовалось, так как принцип непрерывности гарантировал правильность этого заключения. Кроме того, когда одна из секущих вырождается в касательную, она становится равной своему внешнему отрезку, а их произведение продолжает оставаться равным произведению другой секущей на ее внешний отрезок (на рис. 7.5 ab = c 2). Этими результатами Понселе воспользовался, чтобы продемонстрировать, как принцип непрерывности приводит к трем хорошо известным теоремам, удовлетворяющим данному принципу и в какой-то мере воплощающим его. Но, разумеется, эти рассуждения не заменяют доказательства принципа непрерывности, а Понселе, предложивший термин «принцип непрерывности», рассматривал его как абсолютную истину и смело применял в своем «Трактате» для «доказательства» многих новых теорем проективной геометрии.
Рис. 7.5.Теорема о секущей и касательной, проведенных к окружности из одной точки
В действительности принцип непрерывности не был «изобретением» Понселе. В широком философском смысле этот принцип восходит к Лейбницу. В гл. VI мы уже рассказывали о том, как Лейбниц использовал математический принцип непрерывности при построении дифференциального и интегрального исчисления. Однако принцип непрерывности не получил достаточно широкого распространения, пока Гаспар Монж (1746-1818), вдохнув в него новую жизнь, не применил этот принцип для доказательства теорем некоторых типов. Монж сначала доказывал общую теорему для особым образом расположенной фигуры, а затем утверждал, что теорема верна и в общем случае, хотя при переходе к общему положению некоторые элементы фигуры становились мнимыми.Так, для доказательства теоремы о кривой и прямой Монж сначала рассмотрел бы случай, когда кривая и прямая пересекаются, а затем стал бы утверждать, что доказанная теорема остается верной и в том случае, когда кривая и прямая не пересекаются, т.е., когда их точки пересечения становятся мнимыми.
Некоторые члены Парижской академии наук весьма скептически отнеслись к принципу непрерывности, считая, что он лишен доказательной силы и имеет лишь чисто эвристическое значение. В частности, по поводу этого принципа критически высказывался Коши:
Собственно говоря, речь идет о чисто индуктивном принципе, позволяющем распространять теоремы, доказанные при определенных ограничениях, на те случаи, когда эти ограничения более не существуют. Примененный к кривым второго порядка, этот принцип приводит автора к правильным результатам. Тем не менее мы считаем, что он неприемлем в общем случае и ко всем вопросам геометрии и даже анализа. Придавая принципу непрерывности чрезмерно большое значение, мы рискуем иногда впасть в очевидные ошибки.
К сожалению, критикуя принцип непрерывности, Коши приводил неудачные примеры, в которых правильность результатов, получаемых с помощью этого принципа, подтверждалась другими методами.
Критики обвиняли Понселе и других математиков между прочим и в том, что якобы их уверенность в правильности принципа непрерывности основывается на возможности его обоснования алгебраическими методами, тогда как «чистые геометры» такие методы не признавали. Из записей, которые Понселе делал, находясь в плену в России (он был офицером наполеоновской армии), видно, что он действительно использовал алгебру для проверкиправильности принципа непрерывности. Понселе не возражал против доказательства, основанного на алгебре, считая, однако, что принцип не зависит от такого доказательства. Тем не менее не подлежит сомнению, что если Понселе и прибегал к алгебраическим методам, то только как к эвристическим, после чего подкреплял геометрические результаты, используя для их обоснования принцип непрерывности.
Несмотря на критику, принцип непрерывности воспринимался в XIX в. как интуитивно ясный и потому вполне приемлемый как метод доказательства; геометры широко пользовались им. Но с точки зрения логического развития математики принцип непрерывности был не более чем догматическим,
Утверждение справедливости принципа непрерывности Понселе и применение этого принципа — лишь один из примеров тех извилистых путей, по которым приходится идти математикам, когда они стремятся обосновать то или иное утверждение, не располагая для этого убедительными доказательствами. Но с непротиворечивостью геометрии дело обстояло из рук вой плохо. Как уже говорилось (гл. V), лишь создание в конце XVIII — начале XIX вв. неевклидовой геометрии позволило обнаружить серьезные изъяны в дедуктивной структуре евклидовой геометрии. Однако и посла этого математики не торопились ликвидировать обнаруженные изъяны, пребывая в полной уверенности, что в действительности выведенные ими теоремы абсолютно надежны. Интуитивную основу теорем и подтверждение их правильности многочисленными практическими применениями геометрии математики считали столь убедительными, что не придавали особого значения дефектам ее логической структуры.
Несколько иная ситуация сложилась в неевклидовой геометрии. В начале XIX в. лишь немногие ученые помимо ее создателей — Ламберта, Гаусса, Лобачевского и Бойаи — воспринимали неевклидову геометрию как заслуживающую внимания область математики, ибо ее дедуктивная структура была далеко не так разработана, как дедуктивная структура классической евклидовой геометрии. Однако после появления работ Гаусса и Римана не только основатели новой науки, но и их последователи уверовали в непротиворечивость неевклидовой геометрии (т.е. в то, что никакие ее теоремы не противоречат другим теоремам), которая отнюдь не была доказана. {83} Стало очевидным, что Саккери заблуждался, полагая, будто он пришел к противоречию; однако возникшая после этого общая уверенность в том, что он не мог прийти к противоречию, первоначально также не была ничем обоснована.
83
Из числа создателей неевклидовой геометрии ее аксиоматически-логический статут больше всего беспокоил Яноша Бойаи, который подходил к развитой им науке с чисто аристотелевских позиций («дедуктивная», или «выводная», наука) и одно время даже полагал, что доказал противоречивость новой геометрии. Лобачевский и Гаусс воспринимали новую геометрическую систему более «физично» — как возможную систему описания свойств окружающего нас реального пространства. В частности, Лобачевский, дальше всех продвинувшийся в области «гиперболической» геометрии, был весьма близок к строгому доказательству ее непротиворечивости, поскольку он владел тем, что мы сегодня называем «бельтрамиевыми координатами» точек гиперболической плоскости, которые послужили основой для создания «модели Бельтрами» (или «модели Бельтрами — Клейна»), доказывающей непротиворечивость геометрии Лобачевского. Однако Лобачевский не сделал здесь последнего шага, ибо, будучи твердо уверенным в «истинности», или непротиворечивости, своей геометрии, не чувствовал необходимости этого.
Ведь вполне могло случиться, что противоречие в неевклидовой геометрии все же существует, но пока оно еще не обнаружено. Если бы это было так, то допущение основной аксиомы гиперболической геометрии было бы невозможно — и аксиома Евклида о параллельных оказалась бы, как некогда считал Саккери, следствием остальных евклидовых аксиом. Так, не располагая доказательством непротиворечивости или какими-либо данными о применимости новой геометрии, многие математики приняли то, что их предшественники считали абсурдным. Принятие неевклидовой геометрии было актом веры. Вопрос о непротиворечивости неевклидовой геометрии оставался открытым на протяжении еще полувека (гл. VIII).
Итак, в начале XIX в. не была обоснована практически ни одна область математики. Арифметика вещественных чисел, алгебра, евклидова и более новые неевклидова и проективная геометрии либо имели неполноценные обоснования, либо вообще были лишены логического фундамента. Математическому анализу, т.е. дифференциальному и интегральному исчислению, теории рядов и другим разделам недоставало не только строгой теории (даже просто определения!) широко использующихся здесь вещественных чисел и полноты логической структуры алгебры, но и ясности в определении основных понятий анализа —производной, интеграла и бесконечного ряда. С полным основанием можно сказать, что в математике начала XIX в. ничто не было обосновано хоть сколько-нибудь надежно.