Чтение онлайн

на главную

Жанры

Математика. Утрата определенности.
Шрифт:

VIII

Нелогичное развитие: у врат рая

Можно сказать, что ныне достигнута абсолютная строгость. {85}

Анри Пуанкаре

Основатели так называемого критического движения в математике сознавали, что на протяжении более двух тысячелетий математики бродили в непролазных дебрях интуитивных представлений, правдоподобных аргументов, индуктивных рассуждений и формального манипулирования символами. Они предложили подвести прочный логический фундамент под те разделы математики, где он отсутствовал, исключить противоречия и те понятия, которые не имели четких определений, а также усовершенствовать обоснование таких разделов математики, как евклидова геометрия. Осуществление этой программы началось в 20-х годах XIX в., хотя в тот период критическое движение затронуло лишь немногих математиков.

Когда исследования по неевклидовой геометрии приобрели более широкую известность, это, естественно, весьма стимулировало критическое движение, поскольку были обнаружены существенные изъяны в структуре евклидовой геометрии: стало очевидным, что даже эта часть математики, слывшая нерушимым оплотом и недосягаемым эталоном «истинной» строгости, нуждается в критическом пересмотре. А вскоре (1843) создание кватернионов поставило под сомнение уверенность, с которой математики обращались с вещественными и комплексными числами. Разумеется, многие математики по-прежнему пользовались нестрогими рассуждениями и, получая правильные результаты, убеждали себя в том, что как их доказательства, так и представления, изложенные на страницах учебников по математике, вполне обоснованны и логичны. Однако теперь подобной самоуверенностью страдали далеко не все.

85

Пуанкаре А. О науке. — М.: Наука, 1983, с. 164.

Прекрасно понимая, что от претензий математики на роль носительницы абсолютных истин о реальном мире необходимо отказаться, критически мыслившие математики в то же время отдавали должное колоссальным достижениям своей науки в механике, акустике, гидродинамике, теории упругости, оптике, теории электромагнетизма, а также во многих отраслях техники; они по достоинству оценивали исключительную точность даваемых математикой предсказаний в этих областях. Математика сражалась под непобедимым знаменем истины, но одерживать победы ей позволяла какая-то скрытая и даже таинственная сила. Необычайная эффективность математических методов в естествознании, разумеется, нуждалась в объяснении (гл. XV), но отрицать мощь математики как инструмента познания и отмахиваться от нее не осмеливался никто. Без сомнения, эту мощь не следовало подрывать, погружаясь в лабиринты логических трудностей и противоречий. И хотя математики, поступившись строгими обоснованиями, нарушили собственные принципы доказательности, в их намерения отнюдь не входило навсегда оставлять математику на прагматической основе. На карту был поставлен престиж математиков, ибо как иначе они могли провести грань, отделяющую их возвышенную деятельность от прозаической работы инженеров и ремесленников?

И некоторые математики вознамерились еще раз пройти по едва различимым следам прошлого, оставленным в процессе бурного развития своей науки, и проложить надежные пути к тому, что уже достигнуто. Свои усилия они решили прежде всего направить на построение (или критическую перестройку) оснований математики.

Чтобы привести в порядок здание математики, требовались решительные и крутые меры. К тому времени уже стало ясно, что не существует твердой почвы, на которой можно было бы без опасений заложить фундамент математики: столь надежная на первый взгляд опора на истину оказалась обманчивой. Но, может быть, гигантское здание математики станет устойчивым, если под него подвести прочный фундамент иного рода, представляющий собой полную систему четко сформулированных аксиом, определений и явных доказательств всех результатов, сколь бы интуитивно очевидными они ни казались? Основной акцент делался не на истинность утверждений, а на их логическую совместимость, т.е. непротиворечивость. Теснейшая зависимость между аксиомами и теоремами должна была придать устойчивость всему зданию математики. Отдельные части этого здания оказались бы накрепко стянутыми скрепами независимо от того, насколько прочно само оно опирается на землю. Так колеблется под напором ветра гигантский небоскреб, оставаясь тем не менее единой, цельной конструкцией от крыши до фундамента.

Математики начали с оснований математического анализа. Но поскольку математический анализ предполагает использование арифметики вещественных чисел и алгебры, не имевших обоснования, нелогичность такого шага станет более очевидной, если обратиться к следующей аналогии. Представьте себе, что владелец пятидесятиэтажного дома со множеством жильцов, битком набитого мебелью и различной утварью, узнав о шаткости здания, решает перестроить его — и начинает капитальный ремонт с двадцатого этажа!

Но при всей кажущейся нелогичности выбор отправной точки для перестройки математики все же имел объяснение. К началу XIX в. различные типы чисел стали настолько привычными, что, хотя их использование и не было обосновано в рамках формальной логики, сами по себе свойства чисел не вызывали никаких сомнений. Не возникало трудностей и с применением евклидовой геометрии, хотя она и утратила ореол непогрешимости: безотказное служение человечеству на протяжении двух тысячелетий вселяло уверенность в те ее положения, которые не удавалось обосновать с помощью логики. Однако математический анализ был постоянной мишенью для критики. В этом обширном разделе математики встречались нестрогие доказательства, парадоксы и даже противоречия. К тому же многие результаты не были подкреплены даже практически.

В начале XIX в. проблема строгого обоснования математического анализа привлекла внимание трех мыслителей: священника, философа и математика Бернарда Больцано, Нильса Хенрика Абеля и Огюстена Луи Коши. К сожалению, Больцано жил в Праге, и его работы долгие годы оставались неизвестными. Абель умер в возрасте 27 лет и не успел

продвинуться в обосновании анализа сколько-нибудь существенно. Коши работал в Париже, столице математического мира того времени, и к 20-м годам XIX в. имел репутацию одного из величайших математиков мира. Именно поэтому его заслуги в движении за обоснование математики получили наибольшее признание, именно поэтому он оказал наибольшее влияние на своих современников.

Коши решил построить обоснование математического анализа на понятии числа. Почему именно это понятие привлекло его внимание? Англичане, следуя Ньютону, пытались обосновать математический анализ, используя геометрию, — и потерпели неудачу. Коши понимал, что геометрия не может служить основой математического анализа. К тому же математики континентальной Европы, следуя Лейбницу, всегда использовали аналитические методы. Кроме того, хотя к 20-м годам XIX в. работы по неевклидовой геометрии не получили еще широкой известности, математики, по-видимому, были достаточно наслышаны о них, что побуждало их относиться к геометрии с некоторым недоверием. С другой стороны, в царстве чисел математики чувствовали себя достаточно уверенно вплоть до 1843 г., когда Гамильтон создал свои кватернионы; впрочем, даже это знаменательное событие первоначально не вызвало ни малейшего сомнения в том, что с вещественными числами все обстоит благополучно.

Коши поступил весьма мудро, решив построить математический анализ на понятии предела. Как это неоднократно случалось в истории математики, избранный Коши правильный подход уже предлагался ранее некоторыми проницательными умами. Еще в XVII в. Джон Валлис в «Арифметике бесконечно малых» (1655) и шотландский профессор Джеймс Грегори в «Истинной квадратуре окружности и гиперболы» (1667), а затем в XVIII в. Д'Аламбер со всей определенностью указали на понятие предела как на наиболее подходящую основу построения анализа . {86} Особое значение имели взгляды Д'Аламбера, базировавшиеся на трудах Ньютона, Лейбница и Эйлера. Свое понимание предела Д'Аламбер отчетливо сформулировал в статье «Предел», написанной для «Энциклопедии» (1751-1765):

86

Концепцию предела как исходного пункта математического анализа иногда связываюттакже и с Ньютоном, различавшим «первое число» (с которого переменная начинает изменение) и «последнее число» (предел (!) — значение, к которому она приходит) и придававшим особое значение «последним числам». Однако увлеченный физической интерпретацией анализа (производная как скорость), Ньютон не потрудился даже дать понятию «последнего числа» сколько-нибудь отчетливое определение, что лишало основанные на этом понятии конструкции доказательной силы.

Говорят, что одна величина есть предел другой величины, если вторая величина может приблизиться к первой настолько, что будет отличаться от нее меньше чем на любую заранее заданную сколь угодно малую величину, хотя величина, которая стремится к другой величине, никогда не может превзойти ее… {87}

Теория пределов составляет основу истинной метафизики дифференциального исчисления.

Д'Аламбер написал для «Энциклопедии» также статью «Дифференциал», в которой дал обзор работ Барроу, Ньютона, Лейбница, Ролля и других математиков и утверждал, что дифференциал — бесконечно малая величина, т.е. меньше любой «наперед заданной величины». Д'Аламбер счел нужным пояснить, что использует такую терминологию, следуя установившейся традиции. Что же касается самой терминологии, то она, по мнению Д'Аламбера, отличается еще большей краткостью и неясностью, чем подлежащее определению понятие. Правильная терминология и правильный подход должны быть основаны на понятии предела. Д'Аламбер критиковал Ньютона за то, что тот «объяснял» производную как скорость: ведь ясного представления о мгновенной скорости не существует и такое «объяснение», по мнению Д'Аламбера, вводит в математику чисто физическое понятие — движение. В своем сочинении «Разное» ( M'elanges,1767) Д'Аламбер повторил: «Любая величина есть либо нечто, либо ничто. Если величина есть нечто, то ей не дано исчезнуть бесследно. Если величина есть ничто, то она исчезает полностью». Д'Аламбер указал также на понятие предела. Но сам он не развил свою идею о пределе применительно к обоснованию математического анализа, и его современники не смогли оценить ее по достоинству.

87

В данном Д'Аламбером определении предела ныне вызывает сомнение лишь замечание о том, что стремящаяся к aвеличина не может aпревзойти; Д'Аламбер требовал, чтобы из x->aследовало постоянство знака разности x - a,в то время как Коши это последнее условие отбросил.

Концепцию предела можно также обнаружить в «Размышлениях о метафизике исчисления бесконечно малых» Карно, в работе Люилье от 1786 г., удостоенной премии Берлинской академии наук, и в работе Карно, не получившей премии, но тем не менее удостоенной похвального отзыва той же академии. Весьма возможно, что все эти работы оказали влияние на формирование взглядов Коши. Во всяком случае, во введении к знаменитому ныне «Курсу алгебраического анализа» ( Cours d'analyse alg'ebrique,1821) Коши высказался со всей определенностью: «Что же касается методов, то я стремился придать им ту степень строгости, которая достижима в математике».

Поделиться:
Популярные книги

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Неудержимый. Книга XIV

Боярский Андрей
14. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIV

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Подаренная чёрному дракону

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.07
рейтинг книги
Подаренная чёрному дракону

Я Гордый часть 2

Машуков Тимур
2. Стальные яйца
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я Гордый часть 2

Бальмануг. Невеста

Лашина Полина
5. Мир Десяти
Фантастика:
юмористическое фэнтези
5.00
рейтинг книги
Бальмануг. Невеста

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Сонный лекарь 6

Голд Джон
6. Сонный лекарь
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 6

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила