Чтение онлайн

на главную

Жанры

Механика от античности до наших дней
Шрифт:

Из других гидродинамических работ Эйлера упомянем еще ряд статей о распространении звука, о малых колебаниях воздуха в трубах постоянного и переменного сечения с применениями к теории музыки и т. д. Эти работы переплетались с аналогичными исследованиями Д. Бернулли. Математическим аппаратом этих исследований являются уравнения в частных производных второго и высшего порядков, большей частью линейные. Именно той ролью, которую играют уравнения в частных производных в гидромеханике, а также в математической физике, определялся глубокий интерес Эйлера к этой новой тогда отрасли анализа. Эйлер выработал целый ряд приемов интегрирования различных уравнений в частных производных и впервые ввел в рассмотрение некоторые их типы. Мы упомянем здесь лишь весьма важное в газовой динамике и дифференциальной геометрии уравнение

впервые

изученное Эйлером, а затем С. Пуассоном (1781-1840), Б. Риманом (1826-1866), Ж.-Г. Дарбу (1842-1917). В настоящее время это уравнение встречается, в частности, в задачах о движениях газа с околозвуковыми или сверхзвуковыми скоростями.

МЕХАНИКА УПРУГИХ И ГИБКИХ ТЕЛ

Еще в древности были установлены некоторые эмпирические правила, соблюдение которых обеспечивало прочность и надежность сооружений. В XIII в. Иордан Неморарий предпринял первую попытку определить форму кривой, которую принимает под действием нагрузки ось закрепленного стержня, т. е. упругой линии. В XVI в. Леонардо да Винчи изучал вопрос о сопротивлении балок изгибу; он занимался, вероятно, и задачей о сопротивлении колонн. Галилей в «Беседах и математических доказательствах, касающихся двух новых наук» (1638) положил начало учению о сопротивлении материалов. В 1678 г. Гук нашел основной закон линейной зависимости между силой и деформацией при растяжении пружин, струн, тонких стержней и произвел ряд соответствующих опытов. Так были заложены основы теории упругости{170}.

В 1691 г. Я. Бернулли начал серию исследований, посвященных проблеме упругой линии. Некоторые предпосылки и выводы его неточны, но в целом он значительно продвинулся вперед. В частности, он вывел дифференциальное уравнение задачи и доказал, что кривизна линии изгиба пропорциональна изгибающему моменту в точке, — положение, которое использовали затем другие ученые, и среди них Эйлер.

Эйлер рассмотрел задачу об упругих кривых в большом приложении к «Методу нахождения кривых линий» (1744); в русском переводе оно занимает 125 страниц. Работа эта была вызвана замечанием, сделанным Д. Бернулли в письме Эйлеру от 22 октября 1742 г. Бернулли предложил применить к задаче изопериметрический метод, т. е. свести ее к задаче о минимуме некоторого интеграла. Реализуя эту идею, Эйлер по-новому вывел дифференциальное уравнение Я. Бернулли и решил его при различных граничных условиях. В другом отделе того же приложения Эйлер рассмотрел продольный изгиб колонны под действием осевой сжимающей силы и получил выражение для предельной нагрузки, превышение которой приводит к изгибу; эта формула имеется теперь во всех справочниках. Затем Эйлер переходит к изучению колебаний стержней, начиная со стержня, в естественном состоянии прямого и с жестко заделанным в вертикальном положении верхним концом. Эта задача приводится к интегрированию обыкновенного линейного однородного дифференциального уравнения четвертого порядка. В заключение разобраны задачи о колебании стержней при других предположениях о закреплении их концов.

Исследования Д. Бернулли по колебаниям стержней изложены главным образом в двух его статьях: «Физико-геометрические рассуждения о колебании и звучании стержней» и «Механико-геометрические исследования о многообразных звуках, различным образом издаваемых упругими стержнями, иллюстрированные и подкрепленные акустическими опытами». Обе статьи были написаны в самом начале 40-х годов, но увидели свет только в XIII томе «Commentarii» Петербургской академии наук, вышедшем в 1751 г. Д. Бернулли вывел линейное дифференциальное уравнение четвертого порядка для гармонических колебаний горизонтального стержня и дал его общее решение, разобрал несколько задач с различными граничными условиями, соответствующими защемленному, опертому и свободному концам, и вывел уравнения частот колебаний. Теоретические выводы Бернулли сопоставлял с данными опытов над тонкими длинными стержнями. Во второй статье рассмотрена акустическая сторона вопроса.

Д. Бернулли принадлежат и другие важные работы по колеблющимся системам. Отметим из них две тесно связанные между собой статьи: «Теоремы о колебаниях тел, соединенных гибкой нитью и вертикально подвешенных к цепи» и «Доказательства своих теорем о колебаниях тел, соединенных гибкой нитью и вертикально подвешенных к цепи», помещенные соответственно в VI томе «Commentarii» за 1732—1733 гг. и в VII томе за 1734—1735 гг. В них рассмотрены малые колебания дискретных систем грузов, связанных с вертикально подвешенными невесомыми гибкими нитями, а затем как предельный случай — малые колебания однородной тяжелой гибкой цепи (каната).

Особое значение имели работы Эйлера и Д. Бернулли

о малых колебаниях натянутой однородной струны, закрепленной на концах. Линейное дифференциальное уравнение в частных производных этой задачи записал впервые Даламбер, выразивший общее решение задачи в виде суммы двух произвольных функций, которые можно полностью определить, зная начальную форму струны и начальное распределение скоростей ее точек (1747). Эйлер немедленно развил далее метод Даламбера (метод характеристик) и показал, как графически строить форму струны в любой момент времени по начальным условиям (1748). Д. Бернулли предложил представлять колебание струны в виде суммы бесконечного числа главных синусоидальных колебании (принцип суперпозиции), т. е. выражать решение в форме тригонометрического ряда (1753).

Не касаясь долгого «спора о струне», в котором участвовали все трое названных ученых, а затем и многие другие ученые XVIII в. [32] , мы заметим только, что исследование этой задачи положило начало в высшей степени плодотворной разработке приемов интегрирования дифференциальных уравнений с частными производными, с одной стороны, и теории тригонометрических рядов — с другой. Задача о струне обыкновенно относится к области математической физики, дисциплины, во многом пересекающейся с теоретической механикой. Д. Бернулли и Эйлер рассмотрели и другие важные задачи математической физики. Так, в статье «О колебательном движении тимпанов», напечатанной в X томе «Novi Commentarii» за 1764 г., Эйлер исследовал малые колебания и провисание идеальной гибкой мембраны прямоугольной или круговой формы. Используя идеи этой работы Эйлера, племянник Д. Бернулли Якоб II Бернулли (1759—1789), состоявший членом Петербургской академии наук в 1786—1789 гг., исследовал задачу о малых колебаниях пластинки. Математическим результатом здесь, как и в гидродинамике, являлось введение новых типов дифференциальных уравнений, новых приемов их решения, различных специальных функций и их разложений в ряды и т. д.

32

Спор этот вращался главным образом вокруг вопросов о том, каков объем класса допустимых решений задачи, представима ли «произвольная» функция тригонометрическим рядом, и об аналитической представимости функций вообще.

Наконец, Эйлеру и Д. Бернулли принадлежит решение нескольких трудных задач о малых колебаниях воздуха в трубах, которыми занимался также Лагранж{171}.

ТРУДЫ ДАЛАМБЕРА ПО МЕХАНИКЕ

Жан Лерон Даламбер (1717—1783) был крупным французским математиком, механиком и философом периода подготовки Великой французской революции. Незаконнорожденный сын аристократки, он был найден на паперти церкви св. Иоанна Круглого (Jean le Rond), откуда и его имя, и воспитан бедным стекольщиком Аламбером — откуда его фамилия d'Alembert.

Выдвинувшись благодаря своим исключительным способностям, он уже в 1741 г. за работы по математике и механике был избран членом Парижской академии наук; с 1772 г. Даламбер занимал пост непременного секретаря Академии. Он был членом многих иностранных академий, в том числе с 1764 г. почетным членом Петербургской академии наук.

Мы здесь не касаемся философско-просветительской деятельности Даламбера, сыгравшей существенную роль в социологической подготовке Великой французской революции; упомянем только, что по своим философским воззрениям Даламбер был сторонником механистического материализма и что в 1751 г. он вместе с Д. Дидро (1713— 1784) основал знаменитую «Энциклопедию наук, искусств и ремесел». Даламберу принадлежит вступительная статья в «Энциклопедии», озаглавленная «Очерк происхождения и развития наук», где приведена классификация наук. В первых томах «Энциклопедии» он опубликовал важные статьи по математике и механике — «Предел», «Дифференциалы», «Уравнения», «Динамика», «Геометрия».

Мы не будем также останавливаться на математических работах Даламбера, лишь отметим, что его труды в этой области часто были связаны с его исследованиями по механике. Например, изучение теории функция комплексного переменного понадобилось Даламберу для его исследований по гидромеханике. Рассмотренные им дифференциальные уравнения также большей частью связаны с механикой (таково, например, «уравнение струны»).

Остановимся на работах Даламбера по механике. К середине XVIII в. его работы вместе с исследованиями Леонарда Эйлера и Даниила Бернулли совершенно преобразовали механику. По содержанию она стала наукой, охватывающей все виды движения материальных точек и их систем, а по форме превратилась в аналитическую дисциплину, в которой применялись все достижения математического анализа.

Поделиться:
Популярные книги

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Неудержимый. Книга XIV

Боярский Андрей
14. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIV

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Подаренная чёрному дракону

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.07
рейтинг книги
Подаренная чёрному дракону

Я Гордый часть 2

Машуков Тимур
2. Стальные яйца
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я Гордый часть 2

Бальмануг. Невеста

Лашина Полина
5. Мир Десяти
Фантастика:
юмористическое фэнтези
5.00
рейтинг книги
Бальмануг. Невеста

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Сонный лекарь 6

Голд Джон
6. Сонный лекарь
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 6

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила