Микрокосм. E. coli и новая наука о жизни
Шрифт:
Глупое или нет, но Эйвери сделал вывод: ДНК — именно то, из чего состоят гены. Но его эксперименты не смогли убедить закоренелых скептиков:
Вирус вводит свою ДНК в клетку E. coli
коллеги решили, что ДНК у него была недостаточно хорошо очищена и, возможно, содержала примеси каких-то белков.
Чтобы восстановить репутацию ДНК, потребовалось еще целое десятилетие исследований на E. coli и ее вирусах. Пока Эйвери исследовал пневмококк в поисках генов, адепты дельбрюковой «Церкви фагов» пытались увидеть вирусы E. coli. Надо сказать, что вирусы
Жизненный цикл вирусов, инфицирующих E. coli, дал ученым возможность провести простой и красивый эксперимент. Альфред Херши и Марта Чейз, исследователи из частной лаборатории в Колд — Спринг — Харбор в штате Нью — Йорк, пометили радиоактивными изотопами ДНК бактериофагов. Позволив этим вирусам внедриться в клетки E. coli, они затем с помощью высокоскоростного центрифугирования удалили с бактерий их пустые оболочки. Теперь радиоактивное излучение регистрировалось в бактериях, а не в покинутых оболочках.
Затем Херши и Чейз провели обратный эксперимент, в котором радиоактивные метки вводились не в ДНК, а в белок вируса. В этом случае после инфицирования E. coli радиоактивность сохраняли только пустые оболочки. Так через десять лет после эксперимента Эйвери Херши и Чейз подтвердили его вывод: гены состоят из ДНК.
Среди тех, кого больше других заинтересовали новые результаты, был молодой американский биолог Джеймс Уотсон. Его приняли в лоно «Церкви фагов» в возрасте всего лишь 20 лет, и при подготовке диссертации он, как и его коллеги, с энтузиазмом облучал вирусы E. coli рентгеновским излучением. Он прекрасно усвоил общепринятое мнение о том, что гены сделаны из белков, но собственные исследования заставили молодого ученого обратить внимание на ДНК. В эксперименте Херши и Чейз Уотсон увидел «новое убедительное доказательство того, что первичным генетическим материалом является ДНК».
Однако, чтобы понять, как ДНК может служить генетическим материалом, необходимо было как следует разобраться в структуре этого вещества. К этому времени Уотсон уже работал в Кембриджском университете, где быстро объединил усилия с Фрэнсисом Криком — британским физиком, тоже мечтавшим раскрыть тайну жизни. Вместе они тщательно изучили все данные о ДНК, собранные к тому времени учеными, и попытались разобраться, как располагаются по отношению друг к другу фосфаты, сахара и азотистые основания. В феврале 1953 г. они внезапно поняли структуру этой молекулы. Молодые люди собрали из стальных пластинок и стержней гигантскую модель, похожую на скрученную в спираль лесенку из сахаров и фосфатов, перекладинами которой служили азотистые основания.
Модель была красива, проста и красноречива. Она, казалось, сама готова была рассказать, как работают гены. Обе нити ДНК построены из миллиардов звеньев — нуклеотидов, расположенных линейно, как буквы в строке текста. Каждый нуклеотид состоит из фосфата и сахара дезоксирибозы, к которому крепится одно из азотистых оснований. Четырем типам азотистых оснований соответствует четыре типа нуклеотидов. Сам текст может иметь бесконечное число значений в зависимости от порядка расположения нуклеотидов. Благодаря этому ДНК может вместить информацию, необходимую для строительства любого белка любого биологического вида.
Структура ДНК помогла Уотсону и Крику понять, каким образом она может репродуцироваться. Они предположили, что нити ДНК расходятся, после чего к каждой из них добавляется новая нить — этот процесс получил название «репликация». Синтез новой ДНК упрощает тот факт, что азотистые основания способны соединяться между собой лишь вполне определенным образом: у каждого типа оснований есть один — единственный возможный партнер. В результате получается идеальная копия первоначальной молекулы.
Теория получилась красивая, а вот серьезных доказательств не хватало. Макса Дельбрюка, в частности, беспокоила «проблема распутывания». Реально ли разделить двойную спираль на две отдельные нити и достроить каждую из них до полноценной молекулы ДНК, не получив взамен спутанный клубок непонятно чего? Дельбрюк попытался найти ответ на этот вопрос, но потерпел неудачу. Успех пришел в 1957 г. к другим — к магистранту Мэтью Мезельсону и научному сотруднику доктору Фрэнку Сталю из Калифорнийского технологического института. С помощью E. coli они поставили эксперимент, который получил известность как самый красивый в биологии.
Мезельсон и Сталь поняли, что репликацию ДНК можно отследить, если выращивать E. coli на особой диете. E. coli для роста и размножения обязательно нужен азот, поскольку этот элемент входит в состав любого нуклеотида. Обычный атом азота содержит 14 протонов и 14 нейтронов, но существуют и другие, более легкие или более тяжелые изотопы азота, в которых нейтронов меньше или больше. Мезельсон и Сталь добавляли в питательную среду E. coli аммиак, содержащий тяжелый азот с 15 нейтронами в каждом атоме. Через некоторое время, когда у бактерии сменилось множество поколений, они извлекли и поместили в центрифугу немного ДНК. Измерив расстояние до точки, куда переместилась ДНК при вращении центрифуги, они вычислили ее массу и выяснили, что ДНК Е, coli, выращенной на тяжелом азоте, как и ожидалось, тяжелее ДНК нормальной E. coli.
Затем Мезельсон и Сталь провели тот же эксперимент чуть иначе. Они отделили немного E. coli с тяжелым азотом в колбу, где бактерии могли питаться нормальным азотом с 14 нейтронами в атоме. Дав бактерии совсем немного времени — всего на один цикл деления, — ученые извлекли ее ДНК и вновь поместили в центрифугу. Их целью была проверка теории Уотсона и Крика, которая давала на этот случай вполне четкие предсказания. Согласно этой теории при делении микроорганизмов внутри каждого из них тяжелые нити ДНК должны были разделиться и разойтись, а новые нити достраивались бы к ним уже из легких атомов. Таким образом, ДНК в новом поколении E. coli должна была получиться наполовину легкой, наполовину тяжелой — и образовать при центрифугировании полосу ровно посередине между тяжелой и легкой ДНК. Так и получилось.
Может быть, Уотсон и Крик построили красивую модель. Но для того, чтобы другие ученые признали их теорию верной и приняли модель на вооружение, потребовался красивый эксперимент на E. coli.
Универсальный код
Когда выяснилось, что у E. coli все же есть половой процесс, ученые впервые получили возможность ближе познакомиться с устройством хромосомы. Оказалось, что половой акт у E. coli протекает довольно своеобразно. Одна из бактерий выбрасывает нитевидный вырост, который называют половым пилем, и с его помощью подтягивает к себе партнера. В течение примерно полутора часов ее ДНК перетекает во второй микроорганизм. Эли Вольман и Франсуа Жакоб из Института Пастера поняли, что эту связь можно разорвать. Они смешивали мутантные штаммы и позволяли им какое-то время конъюгировать, а затем помещали смесь в блендер. В зависимости от времени, которое было у бактерий для конъюгации, реципиент мог получить — а мог и не получить — ген, необходимый для выживания. Вольман и Жакоб измеряли, через какой промежуток времени гены проникают во вторую особь E. coli, и составляли таким образом генетическую карту. Выяснилось, что гены E. coli расположены на хромосоме, замкнутой в кольцо.
Ученые обнаружили, что наряду с главной хромосомой у E. coli есть дополнительные кольцевые ДНК, получившие название плазмид. Плазмиды несут гены и некоторые из этих генов используют для собственного воспроизводства. А есть плазмиды, которые несут гены, позволяющие им перемещаться из одного микроорганизма в другой. Например, у E. coli штамма К-12 в плазмидах содержатся гены, в которых закодированы половые пили. Сойдясь, бактерии обмениваются копиями плазмидной ДНК, а также частью главной хромосомы.