Чтение онлайн

на главную

Жанры

Мир астрономии. Рассказы о Вселенной, звездах и галактиках
Шрифт:

Сюрпризы гравитации

Большой экваториальный телескоп Пулковской обсерватории (конец XIX века).

Нейтронные

звезды

В астрофизике, как, впрочем, и в любой другой отрасли науки, наиболее интересны эволюционные проблемы, проблемы, связанные с извечными вопросами «что было?» и «что будет?».

Что случится со звездной массой, примерно равной массе нашего Солнца, мы уже знаем. Такая звезда, пройдя через стадию красного гиганта, станет белым карликом. Белые карлики на диаграмме Герцшпрунга — Рессела лежат в стороне от главной последовательности.

Белые карлики — конец эволюции звезд солнечной массы. Они являются своеобразным эволюционным тупиком. Медленное и спокойное угасание — конец пути всех звезд с массой, меньше солнечной.

А что можно сказать о более массивных звездах? Мы увидели, что их жизнь полна бурными событиями. Но возникает естественный вопрос о том, чем же заканчиваются чудовищные катаклизмы, наблюдаемые в виде вспышек сверхновых?

В 1054 году на небе вспыхнула звезда-гостья. Она была видна на небе даже днем и погасла лишь через несколько месяцев. Сегодня мы видим остатки этой звездной катастрофы в виде яркого оптического объекта, обозначенного в каталоге туманностей Месье под номером MI. Это знаменитая Крабовидная туманность — остаток взрыва сверхновой.

В 40-х годах нашего столетия американский астроном В. Бааде начал изучать центральную часть «Краба» для того, чтобы попытаться отыскать в центре туманности звездный остаток от взрыва сверхновой. Кстати говоря, название «краб» этому объекту дал в XIX веке английский астроном лорд Росс. Бааде нашел кандидата на звездный остаток в виде звездочки 17m.

Но астроному не повезло, у него не было подходящей техники для детального исследования, и поэтому он не смог заметить, что звездочка эта мерцает, пульсирует. Будь период этих пульсаций яркости не 0,033 секунды, а, скажем, несколько секунд, Бааде, несомненно, заметил бы это, и тогда честь открытия первого пульсара принадлежала бы не А. Хьюишу и Д. Белл.

Лет за десять до того, как Бааде направил свой телескоп в центр Крабовидной туманности, физики-теоретики начали исследовать состояние вещества при плотностях, превышающих плотность белых карликов (106–107 г/см3). Интерес к этому вопросу возник в связи с проблемой конечных стадий эволюции звезд. Интересно, что одним из соавторов этой идеи был все тот же Бааде, который как раз и связал сам факт существования нейтронной звезды с взрывом сверхновой.

Если вещество сжимается до плотностей б'oльших, чем плотность белых карликов, начинаются так называемые процессы нейтронизации. Чудовищное давление внутри звезды «вгоняет» электроны в атомные ядра.

В обычных условиях ядро, поглотившее электроны, будет неустойчивым, поскольку оно содержит избыточное количество нейтронов. Однако в компактных звездах это не так. С увеличением плотности звезды электроны вырожденного газа постепенно поглощаются ядрами, и мало-помалу звезда превращается в гигантскую нейтронную каплю. Вырожденный электронный газ сменяется вырожденным нейтронным газом с плотностью 1014–1015 г/см3.

Другими словами, плотность нейтронной звезды в миллиарды раз больше плотности белого карлика.

Долгое время эта чудовищная конфигурация звезды считалась игрой ума теоретиков. Понадобилось более тридцати лет, чтобы природа подтвердила это выдающееся предсказание.

В те же 30-е годы было сделано еще одно важное открытие, которое оказало решающее влияние на всю теорию звездной эволюции. Чандрасекар и Л. Ландау установили, что для звезды, исчерпавшей источники ядерной энергии, существует некоторая предельная масса, когда звезда еще сохраняет устойчивость. При этой массе давление вырожденного газа еще в состоянии противостоять силам гравитации. Как следствие у массы вырожденных звезд (белые карлики, нейтронные звезды) существует конечный предел (предел Чандрасекара), превышение которого вызывает катастрофическое сжатие звезды, ее коллапс.

Отметим, что, если масса ядра звезды заключена между 1,2 M

и 2,4 M
, конечным «продуктом» эволюции такой звезды должна быть нейтронная звезда. При массе ядра менее 1,2 M
эволюция приведет в конце концов к рождению белого карлика.

Что же представляет собой нейтронная звезда? Массу ее мы знаем, знаем также, что она состоит в основном из нейтронов, размеры которых также известны. Отсюда легко определить радиус звезды. Он оказывается близким к… 10 километрам!

Сравнительные размеры нейтронной звезды и современного города.

Определить радиус такого объекта действительно несложно, но очень трудно наглядно представить себе, что массу, близкую к массе Солнца, можно разместить в объекте, диаметр которого чуть больше длины Профсоюзной улицы в Москве. Это гигантская ядерная капля, сверхядро элемента, который не укладывается ни в какие периодические системы и имеет неожиданное, своеобразное строение.

Вещество нейтронной звезды обладает свойствами сверхтекучей жидкости! В этот факт на первый взгляд трудно поверить, но это так. Сжатое до чудовищных плотностей вещество напоминает в какой-то мере жидкий гелий. К тому же не следует забывать, что температура нейтронной звезды — порядка миллиарда градусов, а, как мы знаем, сверхтекучесть в земных условиях проявляется лишь при сверхнизких температурах.

Правда, для поведения самой нейтронной звезды температура особой роли не играет, поскольку устойчивость ее определяется давлением вырожденного нейтронного газа — жидкости.

Строение нейтронной звезды во многом напоминает строение планеты. Помимо «мантии», состоящей из вещества с удивительными свойствами сверхпроводящей жидкости, такая звезда имеет тонкую твердую кору толщиной примерно в километр. Предполагается, что кора обладает своеобразной кристаллической структурой. Своеобразной потому, что в отличие от известных нам кристаллов, где строение кристалла зависит от конфигурации электронных оболочек атома, в коре нейтронной звезды атомные ядра лишены электронов. Поэтому они образуют решетку, напоминающую кубические решетки железа, меди, цинка, но, соответственно при неизмеримо более высоких плотностях. Далее идет мантия, о свойствах которой мы уже говорили.

Поделиться:
Популярные книги

Проклятый Лекарь IV

Скабер Артемий
4. Каратель
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь IV

Прометей: Неандерталец

Рави Ивар
4. Прометей
Фантастика:
героическая фантастика
альтернативная история
7.88
рейтинг книги
Прометей: Неандерталец

Семья. Измена. Развод

Высоцкая Мария Николаевна
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Семья. Измена. Развод

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Последний из рода Демидовых

Ветров Борис
Фантастика:
детективная фантастика
попаданцы
аниме
5.00
рейтинг книги
Последний из рода Демидовых

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Темный Лекарь 3

Токсик Саша
3. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 3

Наследница Драконов

Суббота Светлана
2. Наследница Драконов
Любовные романы:
современные любовные романы
любовно-фантастические романы
6.81
рейтинг книги
Наследница Драконов

Книга пяти колец

Зайцев Константин
1. Книга пяти колец
Фантастика:
фэнтези
6.00
рейтинг книги
Книга пяти колец

Приручитель женщин-монстров. Том 9

Дорничев Дмитрий
9. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 9

Изгой. Пенталогия

Михайлов Дем Алексеевич
Изгой
Фантастика:
фэнтези
9.01
рейтинг книги
Изгой. Пенталогия

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая