Чтение онлайн

на главную

Жанры

Шрифт:

С XVI в. в Европе зарождается пришедшее от арабов искусство буквенного исчисления и формальная алгебра, которая, постепенно совершенствуясь, к середине XVII в. достигает значительного развития.

4. Здесь приходится упомянуть великого философа и математика Декарта; с одной стороны, он своим афоризмом «Cogito ergo sum» (Мыслю — значит существую) как бы вновь наложил на математику тот отпечаток отвлеченности, который она не только сохранила и доныне, но который особенно усилился за последние 70 лет. С другой стороны, Декарт преобразовал геометрию введением в нее алгебры и ее вычислительных методов, которые были совершенно чужды

древним.

В 1670-х годах Ньютон создает «исчисление флюент и флюксий», т. е. текущих количеств, как он его называет. Независимо от него в 1680-х годах это же исчисление находится и опубликовывается философом Лейбницем и называется им «исчисление бесконечно малых».

Ньютон вместе с тем в изданном им в 1686 г. сочинении «Математические начала натуральной философии» развивает и как бы вновь создает динамику, первые начала которой были положены за 50 лет перед тем Галилеем, [76] и доводит эту науку до высокой степени развития чисто геометрическим путем, по образцу древних, и прилагает созданное им учение к установлению системы мира и познанию и приложениям закона тяготения, им открытого, к изучению движения небесных тел.

76

См. очерк А. Н. Крылова «Галилей как основатель механики» (сб. «Галилео Галилей, 1564–1642», под ред. академика С. И. Вавилова, изд. Академии наук СССР, 1943, с. 56–67); в переработанном виде включен в «Очерк истории установления основных начал механики» (в книге «А. Н. Крылов, Мысли и материалы о преподавании механики в высших технических учебных заведениях СССР», Изд. Академии наук СССР, 1943, с. 5–21).

В течение XVIII в. анализ бесконечно малых доводится до высокой степени совершенства; на его основе развивается теоретическая механика, которая сперва, по примеру Ньютона, прилагается главным образом к изучению движения небесных тел и отчасти к баллистике.

С середины XVIII в. механика начинает прилагаться к решению вопросов технических не только из области статики, которая была создана Архимедом, но и динамики.

С XIX в. технические приложения механики как в области статики, так и динамики все более и более проникают в технику и все более и более ее охватывают.

5. Но и математика не стоит на месте, она продолжает развиваться в разных направлениях, которые можно характеризовать так:

а) развитие вычислительных, в обширном смысле этого слова, процессов;

б) изучение свойств функций, возникающих при вычислениях, установление строгости и строгое обоснование самих вычислительных процессов;

в) общее изучение свойств чисел;

г) изучение свойств пространства и обобщение их;

д) изучение специально алгебраических процессов и свойств алгебраических уравнений;

е) усовершенствование способов численных вычислений, приближенных методов их и приложения этих методов.

Каждая из этих областей разрослась так, что литература по каждой из них в отдельности составляет целую библиотеку из многих сотен, многих тысяч, а иногда и многих десятков тысяч журнальных статей, руководств и трактатов.

Теоретическая механика также разрослась не в меньшей степени; в нее входят:

а) чисто теоретическая или так называемая «рациональная механика»;

б) «небесная механика», т. е.

приложение механики к изучению движения небесных тел;

в) так называемая «прикладная механика», т. е. приложение механики к вопросам изучения механизмов и построения их;

г) теория упругости и сопротивления материалов, изучающая вместе с «строительной механикой» свойства материалов, расчеты разного рода конструкций и возникающих в них напряжений;

д) наконец, сюда же надо отнести математическую физику с ее подразделениями, каждое из которых имеет обширные приложения в практике и технике.

Литература по каждому из этих отделов громадна и, можно сказать, практически необозрима.

6. При нашем беглом обзоре развития математики мы обратили внимание на то, что чистый математик, которого мы будем называть геометр, требует от своей науки — математики — прежде всего безукоризненной логичности и строгости суждений.

Одно время в конце XVIII в. математика как бы отчасти сбилась с этого пути, но уже в первой четверти XIX в. была на него вновь неуклонно направлена Гауссом, Абелем и Коши; начиная же с последней четверти XIX в., по почину Вейерштрасса, в математику вновь вводится, можно сказать, «евклидова строгость», а с нею отвлеченность.

Математика сама создает те идеальные образы, над которыми она оперирует, не только не прибегая при этом к наглядности, но тщательно изгоняя из своих рассуждений и доказательств всякую наглядность, всякое свидетельство чувств. Геометр не только не верит своим чувствам, но не признает самого их существования, он есть декартово «мыслящее существо». Геометру нет дела до того, есть ли в природе такие предметы, к которым его образы относятся, для него важно, что он их создал в своем уме, приписал им определения, аксиомы и допущения, после чего он с полною логичностью и строгостью развивает следствия этих аксиом и допущений, не вводя при этом никаких других аксиом и никаких новых допущений, — до остального ему дела нет.

7. Ясно, что практик, техник, каковым и должен быть всякий инженер, смотрит на дело совершенно иначе. Он должен развивать не только свой ум, но и свои чувства так, чтобы они его не обманывали; он должен не только уметь смотреть, но и видеть; он должен уметь не только слушать, но и слышать, не только нюхать, но и чуять; свои же умозаключения он должен сводить не к робкому декартову «мыслю — значит существую», а к твердому, практическому: «я это вижу; слышу, осязаю, чую — значит это так и есть»

Для геометра математика сама по себе есть конечная цель, для инженера — это есть средство, это есть инструмент такой же, как штангель, зубило, ручник, напильник для слесаря или полусаженок, топор и пила для плотника.

Инженер должен по своей специальности уметь владеть своим инструментом, но он вовсе не должен уметь его делать; плотник не должен уметь выковать или наварить топор, но должен уметь отличить хороший топор от плохого; слесарь не должен уметь сам насекать напильник, но должен выбрать тот напильник, который ему надо.

Поделиться:
Популярные книги

Ваше Сиятельство

Моури Эрли
1. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ваше Сиятельство

Неудержимый. Книга XIV

Боярский Андрей
14. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIV

Идеальный мир для Лекаря

Сапфир Олег
1. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря

Подаренная чёрному дракону

Лунёва Мария
Любовные романы:
любовно-фантастические романы
7.07
рейтинг книги
Подаренная чёрному дракону

Я Гордый часть 2

Машуков Тимур
2. Стальные яйца
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я Гордый часть 2

Бальмануг. Невеста

Лашина Полина
5. Мир Десяти
Фантастика:
юмористическое фэнтези
5.00
рейтинг книги
Бальмануг. Невеста

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Сонный лекарь 6

Голд Джон
6. Сонный лекарь
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Сонный лекарь 6

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Ночь со зверем

Владимирова Анна
3. Оборотни-медведи
Любовные романы:
любовно-фантастические романы
5.25
рейтинг книги
Ночь со зверем

Страж. Тетралогия

Пехов Алексей Юрьевич
Страж
Фантастика:
фэнтези
9.11
рейтинг книги
Страж. Тетралогия

Кодекс Охотника. Книга XIV

Винокуров Юрий
14. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XIV

Не грози Дубровскому! Том VIII

Панарин Антон
8. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том VIII

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила