Чтение онлайн

на главную - закладки

Жанры

Мошенничество в платежной сфере. Бизнес-энциклопедия
Шрифт:

Гибкая ценовая политика — в зависимости от количества объектов мониторинга (карты, терминалы/ТСП) и функциональных возможностей системы стоимость продукта или сервиса для клиента может различаться.

Наличие программ обучения для пользователей системы и ИТ-специалистов (администраторов, разработчиков) в настоящее время расценивается как достаточно важная характеристика системы.

Проактивное развитие системы — система развивается вендором согласно утвержденному плану развития, что позволяет поддерживать систему в актуальном требованиям рынка состоянии и предоставлять клиентам новые функции.

Зрелость продукта является немаловажным фактором, поскольку вендоры с большой и достаточно старой клиентской базой обладают важными знаниями в

части противодействия мошенничеству в платежной сфере (в том числе с учетом региональных особенностей), которые используются в системе.

Адаптация продукта под нужды рынка и конкретных клиентов, включая технологическую гибкость.

Стабильность вендора гарантирует клиентам постоянную поддержку и развитие продукта.

Выбор конкретной СМТ должен быть обоснован текущими и прогнозируемыми потребностями, основываться на оценке рисков в платежной системе. Одним из вариантов решения задачи противодействия мошенничеству является разработка собственной СМТ. Выбору системы из существующих на рынке посвящен следующий раздел.

4.3.5.3. СМТ на рынке

Visa и MasterCard помимо упомянутых выше параметров мониторинга транзакций предлагают также решения в области противодействия мошенничеству. Visa предоставляет сервисы CyberSource Fraud Management для выявления и предотвращения мошенничества в сфере электронной коммерции [111] , MasterCard — Expert Monitoring Solutions [112] , обеспечивающие оценку транзакций как в реальном времени, так и после авторизации, в том числе с применением методов искусственного интеллекта. Один из обозначаемых плюсов решения MasterCard — это предоставление сервиса для банка, что не требует затрат на развертывание системы мониторинга на собственных серверах.

111

https://developer.visa.com/cybersource

112

http://www.mastercard.com/us/company/en/whatwedo/products.html

Несмотря на то что крупнейшие вендоры в мире предлагают услуги по мониторингу как сервис (First Data Fraud Management, FIS Card Fraud Management, TSYS Fraud Management), все же в настоящее время наибольшей популярностью пользуются СМТ, устанавливаемые на серверах банка или ПЦ.

В таблице 4.8 приведены основные поставщики СМТ в мире и их продукты.

Таблица 4.8. Основные поставщики СМТ в мире и их продукты

4.3.5.4. Введение новых условий мониторинга транзакций

Современная СМТ должна, помимо прочего, обеспечивать анализ транзакций на основе явно задаваемых правил. Это требуется банкам для быстрого противодействия вновь выявленным схемам мошенничества, приоритетного мониторинга некоторой группы карт (например, возможно скомпрометированных в некотором стороннем ПЦ в неопределенный интервал времени, причем число карт достаточно велико для их блокировки и перевыпуска), введения временных ограничений операций по некоторым картам и т. д. Эффективность действующих правил и критериев оценки транзакций также должна постоянно поддерживаться путем уточнения условий мониторинга. Общая схема управления условиями мониторинга в правилах анализа транзакций показана на рисунке 4.3.

Рис. 4.3. Управление условиями мониторинга

Каждый факт мошенничества должен анализироваться относительно того, выявлен ли он был или мог бы быть выявлен с помощью СМТ. Если мошенничество было обнаружено с помощью СМТ, то, возможно, требуется уточнение заданных условий анализа транзакций для более раннего обнаружения подобных фактов и (или) снижения количества ложных срабатываний по немошенническим транзакциям. В случае если мошенничество не было выявлено, следует рассмотреть вопрос о добавлении новых условий анализа транзакций в СМТ для того, чтобы аналогичные транзакции могли быть выявлены в дальнейшем.

При изменении заданных условий мониторинга и добавлении новых необходимо оценивать следующие величины:

— степень выявления транзакций определенной схемы мошенничества;

— возможные потери по мошенническим транзакциям, которые могут возникнуть в результате их пропуска при заданных условиях мониторинга;

— количество ложных срабатываний по немошенническим транзакциям;

— нагрузка на операторов СМТ, обрабатывающих подозрительные транзакции;

— нагрузка на операторов call-центра, обеспечивающих взаимодействие с держателями карт для подтверждения транзакций.

4.3.5.5. СМТ на основе нейронных сетей

Из предыдущих разделов становится понятно, что современная СМТ обеспечивает анализ транзакций как минимум на основе правил. Если у банка есть квалифицированные специалисты, способные создавать правила и поддерживать их в актуальном состоянии, то этого часто будет достаточно для организации эффективной защиты от мошенничества в платежной сфере и поддержания рисков на приемлемом уровне.

Тем не менее очень привлекательной выглядит возможность использования аналитических моделей на основе нейронных сетей. Основными преимуществами таких моделей являются построение на основе классифицированных данных о транзакциях (мошеннических и легальных) и их адаптивность с учетом появления информации о новых фактах мошенничества. К минусам следует отнести сложность построения, а также необходимость наличия моделей либо для каждого клиента/ТСП, либо для характерной группы клиентов/ТСП, поведение которых является достаточно типичным. Отдельно нужно строить модель мошенника либо модели для мошенничества различных типов.

Далее в данном разделе рассмотрим один из подходов к построению аналитической модели на основе нейронных сетей.

Задача, которую предстоит решить с использованием модели на основе нейронной сети, относится к распознаванию образов — следует проанализировать транзакцию и сделать вывод о ее принадлежности классу мошеннических, либо к классу легальных транзакций. Нейронные сети, используемые для распознавания, относятся к классу многослойных персептронов (рис. 4.4).

Рис. 4.4. Многослойный персептрон с одним промежуточным слоем

Обучение такой сети происходит следующим образом: каждой входной модели транзакции (вектору информационных признаков транзакции) ставится в соответствие целевое значение О, если транзакция легальная, и 1, если транзакция нелегальная (мошенническая). Вместе они составляют обучающую пару. Для обучения требуется несколько обучающих пар, обычно не меньше произведения количества нейронов в слоях сети. По входной модели транзакции вычисляется выход сети и сравнивается с соответствующим целевым значением. Разность между выходом сети и целевым значением используется для изменения весов дуг, связывающих нейроны в слоях. Эти изменения происходят в соответствии с некоторым алгоритмом, стремящимся минимизировать ошибку. Векторы информационных признаков из обучающей выборки последовательно подаются на вход сети, ошибки вычисляются и веса подстраиваются до тех пор, пока ошибка не достигнет заданного уровня. Следует отметить, что выходным значением может быть не 0 или 1, а, например, число в интервале от 0 до 1 включительно.

Поделиться:
Популярные книги

Пустоцвет

Зика Натаэль
Любовные романы:
современные любовные романы
7.73
рейтинг книги
Пустоцвет

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Адмирал южных морей

Каменистый Артем
4. Девятый
Фантастика:
фэнтези
8.96
рейтинг книги
Адмирал южных морей

Совок 5

Агарев Вадим
5. Совок
Фантастика:
детективная фантастика
попаданцы
альтернативная история
6.20
рейтинг книги
Совок 5

Внешняя Зона

Жгулёв Пётр Николаевич
8. Real-Rpg
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Внешняя Зона

Титан империи 3

Артемов Александр Александрович
3. Титан Империи
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Титан империи 3

Великий князь

Кулаков Алексей Иванович
2. Рюрикова кровь
Фантастика:
альтернативная история
8.47
рейтинг книги
Великий князь

Ледяное проклятье

Михайлов Дем Алексеевич
4. Изгой
Фантастика:
фэнтези
9.20
рейтинг книги
Ледяное проклятье

Бремя империи

Афанасьев Александр
Бремя империи - 1.
Фантастика:
альтернативная история
9.34
рейтинг книги
Бремя империи

Генерал Скала и сиротка

Суббота Светлана
1. Генерал Скала и Лидия
Любовные романы:
любовно-фантастические романы
6.40
рейтинг книги
Генерал Скала и сиротка

Ты не мой Boy 2

Рам Янка
6. Самбисты
Любовные романы:
современные любовные романы
короткие любовные романы
5.00
рейтинг книги
Ты не мой Boy 2

Романов. Том 1 и Том 2

Кощеев Владимир
1. Романов
Фантастика:
фэнтези
попаданцы
альтернативная история
5.25
рейтинг книги
Романов. Том 1 и Том 2

Убивать чтобы жить 6

Бор Жорж
6. УЧЖ
Фантастика:
боевая фантастика
космическая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 6

Законы Рода. Том 4

Flow Ascold
4. Граф Берестьев
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Законы Рода. Том 4