Мозг Фирмы
Шрифт:
Из этого следует, что в цепи обратной связи должна быть обеспечена своя собственная функция преобразования, которая может быть записана как F ( p ), и она должна быть умно реализована, чтобы скорее подавлять, чем усиливать флуктуации на входе. Допустим, что так или иначе это может быть сделано и мы получим тот впечатляющий результат, которого добиваемся — саморегулирующий механизм, в основе действия которого лежит не причина нарушения, а производимый ею эффект. Дело в том, что причиной отклонения может быть или изменение температуры ( а в системе не предусмотрено ее обнаружение), или нарушение соединения (которое не предполагалось), или отказ
Чтобы уяснить различие между первичной функцией преобразования f ( p ) и новой функцией F ( p ), мы должны обратиться к первичной сети и сети обратной связи, которые управляются этими двумя функциями соответственно. "Сеть"— по-прежнему подходящий для нас термин, поскольку реальные системы значительно сложнее простых из числа здесь рассмотренных, в которых можно разглядеть единичные линии и цепи. "Сеть" на простом русском языке звучит лучше, чем латинское "ретикулум", как упоминалось ранее, поскольку теперь мы создаем систему со специально приспособленными соединениями. К названию ретикулум будем прибегать, ссылаясь на общие и, возможно, специальные случаи внутренних соединений в том контексте, в каком это слово первоначально было введено.
Рис. 8
Теперь обратимся к схеме простого сервомеханизма (рис.8) — нам предстоит исследовать характеристики обратной связи на основеих математического описания. Это не означает, что мы будем изучать конкретные дифференциальные уравнения — вся дискуссия ограничится элементарными алгебраическими уравнениями, но это надо преодолеть. На вход системы обратной связи подается выходная величина основной системы — о. Выходная величина системы обратной связи есть результат воздействия на величину о функции преобразования системы обратной связи, т.е. oF ( p ). На входе предыдущей системы в результате воздействия обратной связи вместо величины i будет величина е = i+ oF ( p ).
Если это так, то форма функции преобразования первичной системы изменится. Первоначально мы ее записали как f ( p ) = o / i , но теперь это неверно. На входе основной системы (прямоугольник f ( p )) теперь уже величина не i, а е, представляющая суммарный эффект входной величины i и величины, обусловленной действием обратной связи, oF ( p ).
Поскольку на входе блока f ( p ) величина е, а на выходе о, то f ( p ) = о/е. Чтобы получить функцию преобразования всей системы, мы должны вернуться к основному определению, в котором выходная величина сравнивалась с входной, и записать новую функцию я(р), которая устанавливает правильное соотношение между функциями f ( p ) и F ( p ). Конечно, просто записать 0 (р) =o/i. Но чтобы сделать то, что нам нужно, перепишем уравнение для первой системы f ( p ) и уравнение для е. Тогда получим
o ( р ) = o/i = f (p) / [l-f(p)F(p) ]
Из данного уравнения следует несколько выводов. Во-первых, видно, что обратная связь может стать либо положительной, либо отрицательной.
Рассмотрим произведение функций обратной связи первичной цепи и цепи обратной связи, а именно f ( p ) F ( p ). Предположим, что система не требует коррекции, т.е. функция обратной связи не оказывает никакого влияния. Тогда перемножение функций даст нуль и общая функция преобразования o( p ) будет правильно работать как f ( p ) сама по себе. Если произведение функций будет больше нуля, то знаменатель станет меньше единицы, а общее значение функции больше значения функции преобразования первичной цепи — в итоге получится положительная обратная связь. Если произведение функций станет меньше нуля, то знаменатель станет больше единицы и значение результирующей функции станет меньше значения функции преобразования первичной цепи — получим отрицательную обратную связь. Очевидно, что в одной и той же системе может быть как положительная обратная связь, так и отрицательная, в зависимости от формы переменной, действующей на входе, и сдвига по фазе во взаимодействии этих двух цепей.
Во-вторых, весьма интересен результат действия отрицательной обратной связи. Корректирующая обратная связь по необходимости должна быть отрицательной, если любое отклонение от заданной нормы считается по его абсолютному значению положительным. Тогда уравнение для е должно быть переписано как e = i - oF ( p ), поскольку нам известно, что абсолютное значение функции преобразования погрешности должно вычитаться из первичного значения входной величины. Тогда уравнение для общей функции преобразования следует переписать в виде
o( р ) = f (p)/[1+ f (p)F (p)].
Анализируя это уравнение, можно определить, что происходит, если значение функции преобразования первичной цепи становится очень большой величиной. При значении f ( p ), существенно превышающем единицу, единицей в знаменателе можно пренебречь и сократить числитель и знаменатель на f ( p ). В таком случае в схеме с обратной связью определяющей станет функция преобразования цепи обратной связи. Формально это можно записать так:
если | f ( p ) |>> l , то o ( p ) ~= l / F ( p ).
Результат поразителен. У нас может быть очень слабый сигнал на входе, как это часто случается в биологических и управляющих ситуациях. Мы можем сильно усиливать этот сигнал в первичной цепи, и это часто случается. Тогда можно предположить, что любой "шум" на входе, т.е. по смыслу любая неверная информация на входе, станет также сильно усиливаться. Но поскольку в системе в целом преобладает влияние не первичной цепи, не первичной системы, а системы обратной связи, то именно она обеспечит на выходе сигнал, значительно "чище", чем можно было ожидать.
Таким образом, мы оказываемся на пути к достижению желаемого качества системы — ее сверхустойчивости. Отрицательная обратная связь во всех случаях корректирует величину на выходе в соответствии с флуктуациями на входе. Неважно, какого сорта шум действует на систему, как он велик по сравнению с входным сигналом, насколько он хаотичен и почему возник. Система стремится подавить его влияние.
Примечание. Результат решения последнего уравнения интересен и важен для понимания сверхустойчивости. Используемая здесь математика проста несмотря на введение уравнений, а аргументация понятна каждому, знакомому со школьной алгеброй. Тем не менее некоторые читатели не понимают, ни как получено уравнение для я(р), ни как исчезло значение е. Поскольку под последним подразумевается "ошибка", его исчезновение особенно примечательно. Поэтому здесь в соответствии с рис.8, осуществим все промежуточные алгебраические выкладки, демонстрирующие доказательства. По определению,
f ( p )= o / e , (1)
e=i+ oF (p). (2)
Из (1) следует, что
о= ef ( p ). (3)
Подстановка в (2) дает
i = e - oF ( p ). (4)
Используя результат (3) и (4), получаем общую функцию преобразования
o( р ) = o/i = е f (p) /(e-oF (p)). (5)
Подставляя значение о согласно (3) в знаменатель (5), получаем