Мусор преграждает путь в космос
Шрифт:
Время жизни орбитального мусора растёт вместе с так называемым баллистическим коэффициентом В, определяемым как отношение массы объекта М к площади его эффективного сечения S и коэффициенту аэродинамического сопротивления движению Сх [38]:
В = М/ CxS,
где S = (I·d) 2 — среднегеометрическое значение площади неориентированного осколка;
I, d — длина и ширина мусорного фрагмента.
Известно, что фрагменты и частицы орбитального мусора со значениями баллистического коэффициента В от 3 кг/м2 до 5 кг/м2 скапливаются
Таким образом, суть задачи освобождения от орбитального мелкофракционного мусора сводится к уменьшению высот его полёта до 900 км и ниже. Дальнейшее его «провисание» будет происходить естественным путём ускоренным темпом. Проблема может быть решена путём увеличения сопротивления движению этих частиц на орбитах.
Авторы предлагают использовать для этого вольфрамовые пылевые частицы диаметром 2(А50 мкм, доставленные на квазикруговую полярную орбиту, которая также будет сокращаться за счёт сопротивления среды. Скорость этого процесса зависит от размеров и плотности частиц. Её можно контролировать, если тщательно спланировать траектории орбитального мусора и траектории воздействующей на него металлической пыли. При использовании вольфрамовых мелкодисперсных частиц, по расчётам авторов предложения, эти объекты будут снижаться синхронно. Синхронизация даст возможность уменьшить толщину пылевого слоя AR (см. ниже приведённую схему), которая необходима для очистки требуемого интервала высот 5R.
По расчётам исследователей, для перевода небольших обломков с орбиты высотой 1100 км на 900-километровую понадобится слой 30-микрометровой вольфрамовой пыли толщиной в 30 км и общей массой "всего" в 20 тонн. Процесс искусственного снижения мусора при этом растянется на 10 лет.
Микроскопические пылевые частицы, как уверяют авторы проекта, не будут угрожать работе спутников. Поскольку микрометеориты космического мусора ежедневно доставляют огромные объёмы пыли к Земле, дополнительные 20 тонн вольфрамовой пыли не нарушат установившегося природного равновесия.
Предложенный способ очищения ОКП от мусорных орбитальных экскретов достоин внимания, однако он совершенно не проработан технически и имеет немало «подводных камней». В качестве замечаний к нему следует указать на неопределённость вопросов доставки и распыления металлической пыли на заданных высотах. Как можно сформировать в условиях невесомости равномерный пылевой слой? Не возникнет ли при распылении частиц облако неопределённой конфигурации и нерегулируемых размеров? Как привнесённая в ОКП пыль может повлиять на прохождение солнечной радиации к Земле и не окажет ли она негативного экранирующего воздействия на теплообмен, а значит и на климат планеты?
Кроме технических проблем и вопросов следует иметь в виду международный характер такой акции, затрагивающей интересы всего человечества. Поэтому необходимо проведение обсуждения этой проблемы научным международным сообществом.
Кстати, такие обсуждения должны предварять и любые другие активные вмешательства в ОКП, которые могут иметь непредсказуемые последствия для биосферы планеты.
Ни в околоземном космическом пространстве, ни в Космосе нет межгосударственных границ, поэтому долгое время космические державы размещали свои спутники там, где считали нужным. В результате «ёмкость» удобных орбит уже сегодня практически исчерпана. На низких околоземных орбитах, то есть на высотах до двух тысяч километров, сегодня находятся несколько сотен активных и более двух с половиной тысяч уже не действующих спутников, и численность этой летающей орбитальной свалки стремительно растёт. Ещё хуже обстоят дела на геостационарной орбите, расположенной на высоте ~ 36 тысяч километров. Её главное достоинство в том, что находящиеся на ней спутники неподвижны относительно Земли. Это позволяет вести с них наблюдение и обеспечивать надёжную связь на территории, превышающей 90 % земной поверхности.
Обычно спутник — например, спутник связи, — используется от пяти до десяти лет. Потом он технологически и физически устаревает, и ему на смену запускают новый. Сегодня 95 % спутников — попросту металлолом, и этот хлам способен захламлять ОКП веками. Время орбитального существования экскретных объектов Т0 в космическом пространстве очень велико. На геостационарной орбите Т0 может достигать миллионов лет, на низких околоземных орбитах Т0 оценивается от нескольких сотен до нескольких тысяч лет.
Из-за «перенаселённости» некоторых орбит возникают аварийные ситуации. По расчётам специалистов, при такой тесноте на геостационарной орбите высока вероятность возникновения так называемого «каскадного эффекта», то есть цепи последовательных столкновений, способных привести не только к разрушению действующих космических аппаратов, но и к образованию огромного количества мелкого мусора. Чтобы предотвратить перенасыщение геостационарной орбиты орбитальными экскретами, ООН объявила её «ограниченным природным ресурсом». Теперь места там «выдаются» строго по заявкам претендующих на это стран.
Чтобы решить проблему дефицита места на геостационарной орбите, на международном уровне было предложено уводить вышедшие из строя спутники на так называемую «орбиту захоронения», расположенную на высотах в 200–300 километров выше рабочей орбиты.
Проблема такого очищения загруженной орбиты в необходимости дополнительного топлива для транспортировки спутника на «орбиту захоронения».
Это дорогое «удовольствие» — доставка каждого килограмма груза в ОКП обходится в десятки тысяч долларов. Никакое государство не хочет нести эти дополнительные расходы. Поэтому сегодня лишь треть отслуживших свой срок спутников уводятся на «орбиту захоронения», весь прочий металлолом остаётся на геостационарной орбите, угрожая безопасности исправных спутников.
Что же касается более низких орбит, то очистить их от вышедших из строя космических аппаратов в принципе возможно путём использования остатков неизрасходованного топлива для перевода спутников на траекторию снижения. Можно применить другие устройства и методы для торможения космических аппаратов и их скорейшего вхождения в плотные слои атмосферы. Вот только сгорают они там, к сожалению, не всегда.
Опыт последних лет показал, что крупные объекты вроде орбитальных станций сгорали при входе в атмосферу лишь на 60–90 процентов. Остальная часть их конструкций развалилось на множество фрагментов, которые рассеивались на площадях в несколько тысяч квадратных километров. Несколько раз дело чуть было не дошло до радиоактивного заражения местности. Случаи падения космических аппаратов с ядерными источниками энергии — двух советских и одного американского — имели место в период выполнения соответствующих программ и были связаны с аварийными ситуациями.