Наука логики
Шрифт:
После этих замечаний переходим к указанию видов исчисления.
1. Первым порождением числа является совокупление многих как таковых, т. е. многих, каждое из которых положено лишь как одно, — нумерация. Так как одни внешни друг другу, то они представляются под каким- нибудь чувственным образом и операция, посредством которой порождается число, есть сосчитывание по пальцам, по точкам и т. п. Что такое четыре, пять и т. д., это может быть лишь показано. Остановка в счете, будет ли совокуплено столько-то одних или иное их количество, есть нечто случайное, произвольное, так как граница внешня. — Различие численности и единицы, появляющееся в дальнейшем развитии видов исчисления, служит основой системы чисел — 15 Гегель, том V, Наука логики
{226}
двоичной, десятеричной и т. д.; такая система покоится в общем на произвольном выборе той численности, которая постоянно должна снова и снова быть взята как единица.
Возникшие
С трудом этого нумерирования, нахождения сумм, произведений навсегда покончено готовой таблицей сложения или умножения, которую нужно лишь заучить наизусть.
Кант рассматривает (во Введении к «Критике чистого разума», раздел V) предложение: 7 + 5 = 12 как синтетическое предложение. «Можно было бы, — говорит он, — сначала, правда, подумать (конечно!), что это чисто аналитическое предложение, вытекающее, согласно закону противоречия, из понятия суммы пяти и семи». Понятие суммы ничего более не означает, кроме того абстрактного определения, что эти два числа должны быть совокуплены и притом как* числа внешним, т. е. чуждым понятию образом, т. е. означает, что начиная; с 7 следует продолжать нумерацию до тех пор, пока не будут исчерпаны долженствующие быть прибавленными одни, численность которых определена числом 5; полученный результат носит уже заранее известное название двенадцати. «Однако, — продолжает Кант, — при ближайшем рассмотрении мы находим, что понятие суммы 7 и 5 ничего более не содержит в себе, кроме соединения этих двух чисел в одно единственное, чем вовсе еще не мыслится, каково это единственное число, соеди-
{227}
няющее в себе те два числа». «Сколько бы я ни расчленял свое понятие о таковой возможной сумме, я все-таки не Естречу в нем двенадцати». С мышлением суммы, с расчленением понятия, переход от указанной задачи к получающемуся результату в самом деле не имеет ничего общего.
«Нужно выйти за пределы этих понятий, прибегнуть к помощи созерцания, пяти пальцев и т. д. и, таким образом, присоединить эти единицы данных в совещании пяти к понятию семи», — прибавляет он. Пять в самом деле дано в созерцании, т. е. есть совершенно внешняя сочетанность произвольно повторявшейся мысли, одного; но 7 есть столь же мало понятие; здесь нет понятий, за пределы которых нужно было бы выходить. Сумма 7 и 5 означает чуждое понятию соединение этих двух чисел; это столь чуждое понятию нумерирование, продолжающееся от 7 до тех пор, пока не будут исчерпаны пять единиц, можно назвать сочетанием, синтезированием ровно с таким же правом, как и нумерацию, начинающую с одного, — синтезированием, которое, однако, носит совершенно аналитический характер, так как связь здесь всецело искусственная, в ней нет ничего такого и в нее не привходит ничего такого, что не наличествовало бы перед нами совершенно внешним образом. Требование сложить 7 с 5 относится к требованию считать вообще как требование продолжить прямую линию к требованию провести прямую линию.
Таким же бессодержательным, как выражение «синтезирование», является определение, что это синтезирование совершается a priori. Правда, считание не есть определение, принадлежащее области ощущений, которые согласно кан- товскому определению созерцания единственно только и остаются на долю а posteriori, и считание есть несомненно операция, совершающаяся на почве абстрактного созерцания, т. е. такого созерцания, которое определено категорией одного и при котором абстрагируются как от всяких прочих определений, принадлежащих области ощущения, так и от понятий. «А priori» есть вообще нечто лишь смутное.
Определение, принадлежащее области эмоций — влечение, склонность и т. д., в такой же мере имеет в себе момент,
{228}
априорности, а пространство и время как существующие, т. е. временное и пространственное, определены также и a posteriori.
В связи с (этим мы можем прибавить, что в утверждении Канта о синтетическом характере основоположений чистой геометрии также нет ничего основательного. Признавая, что многие из них действительно аналитичны, он в доказательство представления о синтетичности других приводит только ту аксиому, что
{229}
(кратчайшего расстояния), который якобы составляет синтез, исключительно и всецело аналитичен. Линия как пространственная есть количество вообще; простейшим, что можно сказать об определенном количестве, является «наименьшее», а это последнее, высказанное о линии, есть «кратчайшее». Геометрия может брать эти определения как следствия из дефиниции; но Архимед в своих книгах о шаре и цилиндре (см. перев. Таубера, стр. 4) поступил всего целесообразнее, выставив указанное определение прямой линии как аксиому; он делает это в таком же правильном смысле, в каком Эвклид поставил в числе аксиом определение, касающееся параллельных линий, так как развитие этого определения для того, чтобы оно стало дефиницией, также потребовало бы не непосредственно принадлежащих пространственности, а более абстрактных качественных определений (подобно тому как только что в применении к прямой линии потребовалось такое определение как простота), — одинаковости направления и т. п. Эти древние сообщили также и своей науке пластический характер, их изложение строго держалось своеобразия ее материи и поэтому исключало из себя все, что было бы ему гетерогенно.
Понятие, которое Кант выставил в своем учении о синтетических суждениях a priori, — понятие о различиям, которое также и неотделимо друг от друга, о тождественном, которое в самом себе нераздельно есть различие, принадлежит к тому, что есть великого и бессмертного в его философии. В созерцании это понятие, разумеется, также имеется, так как это понятие есть само понятие, и всё есть в себе понятие; но те определения, которые выделены в приведенных примерах, не выражают его·; число и считание есть, напротив, такое тождество и продуцирование такого тождества, которое безоговорочно есть лишь внешнее тождество, лишь поверхностный синтез, единство единиц, таких единиц, которые, напротив, положены как в самих себе не тождественные друг с другом, а внешние, сами по себе раздельные. В прямой линии в основании определения, что она есть кратчайшее расстояние между двумя точками,
{230}
должен лечь скорее лишь момент абстрактного тождества, лишенного различия в нем самом.
Я возвращаюсь от этого отступления к самому сложению. Соответствующий ему отрицательный вид исчисления, вычитание, есть в свою очередь совершенно аналитическое отделение чисел, которые, как и в сложении, определены лишь как вообще неравные в отношении друг друга.
2. Ближайшим определением является равенство тех чисел, над которыми должно быть произведено действие нумерации. Благодаря этому равенству эти числа суть единицы, и в числе появляется различие единицы и численности. Умножение имеет задачей сосчитать воедино численность таких единиц, которые сами суть тоже численности.
При этом безразлично, какое из двух чисел принимается за единицу и какое за численность, безразлично, говорим ли мы четырежды три, где четыре есть численность, а три — единица, или, наоборот трижды четыре. — Мы уже указали выше, что первоначальное нахождение произведения совершается посредством простого процесса нумерации, т. е.
сосчитывания на пальцах и т. д.; получающаяся позднее способность непосредственно указать произведение покоится на собрании таких произведений, на таблице умножения и знании ее наизусть.