Наука логики
Шрифт:
Деления есть отрицательный вид исчисления согласно тому же определению различия. Здесь также безразлично, какой из двух факторов, делитель ли или частное, мы примем за единицу и какой за численность. Делитель принимается за единицу, а частное — за численность, когда задачей деления объявляется желание узнать, сколько раз (численность) некоторое одно число (единица) содержится в данном числе; наоборот, делитель принимается за численность, а частное за единицу в том случае, когда говорят, что требуется разделить некоторое число на данную численность одинаковых частей и найти величину такой части (единицы).
3. Те два числа, которые определены одно относительно другого как единица и численность, еще непосредственны относительно друг друга и потому вообще неравны. Даль-
{231}
нейшим
{232}
ляющих собою противоположность того, что суть и выражают собою корни. — Согласно сказанному единственно только арифметический квадрат содержит в себе всецелую определенность, вследствие чего уравнения дальнейших формальных степеней должны быть приведены к нему; точно так же, как в геометрии прямоугольный треугольник содержит в себе всецелую определенность внутри себя, выраженную в пифагоровой теореме, и поэтому для полного определения всех прочих геометрических фигур они должны быть приведены к нему.
В преподавании, подвигающемся вперед согласно логически построенному суждению, изложение учения о степенях предшествует изложению учения о пропорциях; последние, правда, примыкают к различию единицы и численности, составляющему определение второго вида исчисления, однако они выходят за пределы того одного, которое есть одно непосредственного определенного количества, в котором единица и численность суть лишь моменты; дальнейшее определение по этим моментам (37) остается для него самого также еще внешним. Число в отношении не есть уже непосредственное определенное количество; последнее имеет тогда свою определенность как опосредствование; количественное (38) отношение мы рассмотрим далее.
О вышеуказанном все дальнейшем и дальнейшем определении арифметических действий можно сказать, что оно не есть философствование о них, не есть, скажем, изложение их внутреннего значения, потому что оно на самом деле не есть имманентное развитие понятия. Но философия должна уметь различать то, что по своей природе есть внешний самому себе материал, должна знать, что в таком материале поступательное движение понятия может происходить лишь внешним образом и что моменты этого движения могут иметь бытие лишь в своеобразной форме их внешности,
{233}
идеями не нарушали своеобразия внешнего и случайного и чтобы мы вместе с том не искажали этих идей и не делали их формальными вследствие несоответственности материала. Но тот внешний характер, который носит выступление моментов понятия в вышеуказанном внешнем материале, в числе, есть здесь соответственная форма; так как они представляют нам предмет в присущем ему смысле, а также ввиду того, что они не требуют никакого спекулятивного подхода и потому представляются легкими, они заслуживают применения в элементарных учебниках.
Примечание 2 [Употребление числовых определений для выражения философских понятий] Как известно, Пифагор изображал в числах разумные отношения или философемы, да и в новейшее время философия применяла числа и формы их соотношений; как, например, степени и т. п., чтобы регулировать согласно* им или выражать в них мысли. — В педагогическом отношении число признавалось наиболее подходящим предметом внутреннего созерцания, а занятие вычислением его отношений — деятельностью духа, в которой он делает наглядными свои наисобственнейшие отношения и вообще основные отношения сущности. — В какой «мере числу на самом деле принадлежит эта высокая ценность, видно из его понятия, каким оно получилось выше.
Число обнаружилось для нас как абсолютная определенность количества, а его стихия — как ставшее безразличным различие; оно оказалось определенностью в себе, которая вместе с тем положена лишь вполне внешне.
Арифметика есть аналитическая наука, так как все встречающиеся в ее предмете связи и различия не зависят от него самого, а учинены ему совершенно извне. Она не имеет конкретного предмета, который содержал бы в себе внутренние отношения, первоначально скрытые для знания, не данные в непосредственном представлении о нем, а долженствующие быть выявлены усилиями познания. Она не только не со-
{234}
держит в себе понятия и, следовательно, задачи для постигающего в понятиях (fur das begreifende) мышления, но есть его противоположность. Вследствие безразличия приведенного в связь к связи, которой недостает необходимости, мышление оказывается здесь занятым деятельностью, которая вместе с тем есть самое крайнее отчуждение от самого себя, занятым насильственной деятельностью, заключающейся в том, что оно движется в сфере безмыслия и приводит в связь то, что не способно носить характер необходимости.
Предметом здесь служит абстрактная мысль о внешности как таковой.
Как таковая мысль о носящем характер внешности, число есть вместе с тем абстракция от чувственного многообразия; от чувственного оно ничего другого не сохранило, кроме абстрактного определения внешности; благодаря этому] в числе чувственное наивозможно ближе подведено к мысли.
Число есть чистая мысль о самоотчуждении мысли.
Поднимающийся над чувственным миром и познающий свою сущность дух, ища стихии для своего чистого представления, для выражения своей сущности, может поэтому раньше, чем он постигнет, что сама мысль является этой стихией и обретет для ее изображения чисто духовное выражение, вздумать избрать для этого число, эту внутреннюю, абстрактную внешность. Поэтому мы находим в истории науки, что уже рано применяли число для выражения философем. Оно составляет последнюю ступень того несовершенства, которое состоит в том, что всеобщее берется как обремененное чувственным. Древние определенно сознавали, что число находится посередине между чувственным и мыслью. Согласно Аристотелю («Метафизика», 1, 5) Платон говорил, что помимо чувственного и идей, посередине между ними, находятся математические определения вещей; от чувственного они отличаются тем, что они невидимы (вечны) и неподвижны, а от идей — тем, что они суть некоторое «множественное и сходное, между тем как идея лишь безоговорочно тождественна с собою и едина внутри себя. — Более подробное, основательно продуманное рассуждение об этом Модерата Кадиксского приводится в «Malchi vita Pytha-