Наука логики
Шрифт:
{235}
gorae ed. Ritterhus», стр. 30 и сл.; то обстоятельство, что пифагорейцам пришла в голову мысль остановиться на числах, он приписывает тому, что они еще не были в состоянии ясно постигнуть в разуме основные идеи и первые начала, потому что трудно продумать и выразить эти начала; числа хорошо служат для обозначения при преподавании; пифагорейцы, между прочим, подражали в этом геометрам, которые, не умея выражать телесное в мысли, применяют фигуры и» говорят, что это — треугольник, причем они требуют, чтобы не принимали за треугольник лежащий перед глазами чертеж, а лишь представляли себе с помощью последнего мысль о треугольнике. Так, например, пифагорейцы выразили как одно мысль о единстве, тождественности и равенстве, а также и основание гармонии, связи и сохранения всего, основание тождественного с самим собою и т. д. — Излишне заметить, что пифагорейцы перешли от выражения в числах также и
{236}
и сами по себе часто представляют собою превратный математический формализм, — считают основательным и глубоким возвращение к вышеупомянутому беспомощному детству.
Что касается вышеприведенного выражения, что число занимает промежуточное положение между чувственным и мыслью, имея вместе с тем то общее с первым, что· оно есть по своей природе (an ihr) многое, внеположное, то следует заметить, что само это многое, принятое в мысль чувственное, есть принадлежащая ей (мысли) категория внешнего в самом себе. Дальнейшие, конкретные, истинные мысли, представляющие собою наиболее живое, наиболее подвижное, только соотнесением и занимающееся, превращаются в мертвенные, неподвижные определения, когда их перемещают в эту стихию вне-себя-бытия. Чем богаче становятся мысли определенностью и тем самым также и соотношением, тем более запутанным;, с одной стороны, а с другой стороны, тем более произвольным и лишенным смысла становится их изложение в таких формах, как числа.
Единица, два, три, четыре, генада или монада, диада, триада, тетрактис, еще близки к совершенно простым, абстрактным понятиям; но когда числа должны переходить к изображению конкретных отношений,· тогда оказывается тщетным стремление сохранить связь между ними и понятием.
А когда для характеристики движения понятия, благодаря каковому движению оно только и есть понятие, обозначают определения мысли через одно, два, три, четыре, то этим предъявляется к мышлению самое жестокое требование. Мышление движется тогда в стихии своей противоположности, отсутствия соотношений. Его дело становится тогда работой безумия. Постигнуть, например, что одно есть три, а три — одно, лютому так трудно, что одно есть нечто лишенное соотношений и, следовательно, не являет в самом себе того определения, посредством которого оно переходило бы в свою противоположность, а, напротив, состоит именно в полном исключении такого рода соотношения и отказе от него. Рассудок, наоборот, пользуется этим против спекулятивной истины (например, против истины, за-
{237}
ключающейся в учении, называемом учением о триединстве) и перечисляет те определения последней, которые составляют одно единство, чтобы выставить ее как явную бессмыслицу, т. е. он сам впадает в бессмыслицу, превращая в лишенное соотношений то, что всецело есть соотношение.
Слово «триединство» употребляется, конечно, не в расчете на то, что рассудок будет рассматривать одно и число как существенную определенность содержания. Это слово выражает собою презрение к рассудку, который в своем тщеславии, однако, упорно держится одного и числа как таковых и выставляет это тщеславие как оружие против разума.
Принимать числа, геометрические фигуры просто за символы, как это часто проделывали с кругом, треугольником и т. д. (круг, например, принимался за символ вечности, треугольник — за символ триединства), есть, с одной стороны, нечто совершенно невинное; но нелепо, с другой стороны, предполагать, что этим выражают нечто большее, чем то, что мысль способна постигнуть и выразить. Если в таких символах, как и в других, создаваемых фантазий в народной мифологии) и вообще в поэзии, в сравнении с которыми чуждые
В символах истина в силу чувственного элемента еще помутнена и закутана; она вполне открывается сознанию только в форме мысли; их значением служит лишь сама мысль.
Но заимствование математических категорий с целью что-нибудь определить относительно метода или содержания философской науки уже потому оказывается по существу чем-то превратным, что, поскольку математические формулы обозначают мысли и различия понятия, это их значение, наоборот, должно быть сначала указано, определено и оправдано в философии. В своих конкретных науках последняя должна почерпать логическое из логики,
{238}
а не из математики. Обращение для установления логического в философии к тем формам (Gestaltungen), которые это логическое принимает в других науках и из которых многие суть только предчувствия, а другие — даже искажения этого логического, может быть лишь крайним средством, к которому прибегает философское бессилие. Голое применение таких заимствованных формул есть сверх того внешний способ действия; самому применению должно было бы предшествовать осознание как их ценности, так и их значения; но такое осознание дается лишь мыслительным рассмотрением, а не авторитетом, который эти формулы получили в математике. Таким их осознанием, является сама логика, и это осознание совлекает их частную форму, делает ее излишней и никчемной, исправляет ее, и исключительно лишь оно сообщает им оправдание, смысл и ценность.
Какое значение имеет употребление числа и счета, поскольку оно должно составлять главную педагогическую основу, это из предшествующего само собою ясно. Число есть нечувственный предмет, и занятие им и его сочетаниями— нечувственное занятие; дух, следовательно, этим приучается к рефлексии в себя и к внутренней абстрактной работе, что имеет большое, но одностороннее значение.
Ибо, с другой стороны, так как в основании числа лежит лишь внешнее, чуждое мысли различие, то указанная работа становится безмысленной, механической. Требуемое ею напряженное усилие состоит преимущественно в том, чтобы удерживать чуждое понятию, и комбинировать его, не прибегая к понятию. Содержанием здесь служит пустое одно; богатое содержание (der gediegene Inhalt) нравственной и духовной жизни и индивидуальных ее образований, которое, как благороднейшая пища, должно служить великим средствам воспитания юношеского духа, вытесняется бессодержательной единицей. Результатом этих упражнений, когда их делают главным делом и преимущественным занятием, может быть только то, что дух по форме и содержанию опустошается и притупляется. Так как счет есть столь внешнее и, стало быть, механическое занятие, то
{239}
оказалось возможным изобрести машины, совершеннейшим образом выполняющие арифметические действия. Если бы о природе счета было известно хотя бы только одно это обстоятельство, то одним этим был бы решен вопрос, какова ценность зряшной мысли сделать счет главным средством воспитания духа и этим подвергать его пытке, заставляя его усовершенствовать себя до того, чтобы стать машиной.
В. Экстенсивное и интенсивное определенное количество а) Различие между ними 1. Определенное количество, как оказалось в предшествующем, имеет свою определенность как границу в численности. Оно есть некое в себе дискретное, некое множественное, не имеющее такого бытия, которое было бы отлично от его границы и имело бы ее вне себя. Определенное количество, взятое таким образом со своей границей, которая есть некое многообразное в себе самой, есть экстенсивная величина.
Следует отличать экстенсивную величину от непрерывной. Первой непосредственно противоположна не дискретная, а интенсивная величина. Экстенсивная и интенсивная величины суть определенности самой количественной границы, определенное же количество тождественно со своей границей. Непрерывная и дискретная величины суть, напротив, определения величины в себе, т. е. количества как такового, поскольку мы, имея дело с определенным количеством, отвлекаемся от границы. — Экстенсивная величина имеет момент непрерывности в самой себе и в своей границе, так как ее множественное есть вообще непрерывное; постольку граница как отрицание выступает в этом равенстве многих как ограничение единства. Непрерывная величина есть продолжающее себя количество безотносительно к какой бы то ни было границе, и, поскольку мы ее представляем себе с таковой границей, последняя есть некое ограничение вообще, без того чтобы в нем была положена дискретность. Определенное количество, взятое лишь как