Наука логики
Шрифт:
своеобразным предметом интегрального исчисления.
Рассмотрим сначала первое отношение и возьмем для — долженствующего быть заимствованным из области так называемого приложения — определения того момента, в котором заключается интерес действия, простейший пример кривых, определяемых уравнением второй степени. Как известно, уравнением непосредственно дано в некотором степенном определении отношение координат. Следствиями основного определения являются определения других связанных с координатами прямых линий: касательной, под- касательной, нормальной и т, п. Но уравнения между этими линиями и координатами суть линейные уравнения; те целые, как части которых определены эти линии, суть прямоугольные треугольники, составленные прямыми линиями. Переход от основного уравнения, содержащего степенное определение, к этим линейным уравнениям содержит в себе вышеуказанный переход от первоначальной функции, т. е. от той функции, которая представляет собою некоторое уравнение, к производной функции, которая есть некоторое отношение и притом отношение между известными, содержащимися
Небезынтересно привести здесь ту историческую справку, что первые открыватели умели указать найденное ими решение лишь совершенно эмпирическим образом, не будучи в состоянии объяснить само действие, оставшееся совершенно внешним. Я ограничиваюсь указанием на Барроу, учителя Ньютона. В своих Lect. opt. et geom., в которых он решает задачи высшей геометрии по методу неделимых, отличающемуся ближайшим образом от особенностей ди- ференциального исчисления, он сообщает, «так как его друзья этого настойчиво просят» (Lect. X), также и свой
{329}
метод определения касательных. Нужно прочесть у него самого, как он решает эту задачу, чтобы составить надлежащее представление о том, как его указания относительно этого «метода носят характер указания о совершенно внешнем правиле, в том же стиле, как излагалось когда-то в учебниках арифметики тройное правило или, еще лучше, так называемая проба арифметических действий девяткою (48).
Он чертит те маленькие линии«, которые впоследствии были названы приращениями в характеристическом треугольнике кривой линии, и затем в виде простого правила предписывает отбросить как излишние те члены, которые в ходе развертывания уравнения выступают как степени или произведения этих приращений (etenim isti termini nihilum valebunt) (49), а также и те члены, которые содержат величины, определяемые лишь из первоначального уравнения (позднейшее вычитание первоначального уравнения из него* же с приращениями), и, наконец, подставить вместо приращения ординаты самую ординату и вместо приращения абсциссы — подкасательную. Нельзя, если дозволительно так выразиться, изложить способ более школьно-педантически; последняя подстановка представляет собою сделанное в обычном диференциальном методе основой определения касательной допущение пропорциональности приращений ординаты и абсциссы ординате и подкасательной; в правиле- Барроу это допущение выступает во всей своей наивной наготе. Был найден простой способ определения подкасательной; способы Роберваля и Ферма сводятся к чему-то· сходному — метод нахождения наибольших и наименьших значений, из которого исходил последний, покоится на тех же основах и том же приеме. Математической страстью того времени было нахождение так называемых методов, т. е. этого рода правил, и притом делать ив них секрет, что было не только легко, но в известном отношении даже нужно, и нужно именно потому, что было легко, а именно потому, что изобретатели находили лишь эмпирически внешнее правило, а не метод, т. е. не нечто, выведенное из- признанных начал. Такие так называемые методы Лейбниц воспринял от своего времени; Ньютон также воспринял их 330 УЧЕНИЕ О БЫТИИ от своего времени, а непосредственно — от своего учителя; обобщением их формы и их применимости они проложили новые пути в науках, но, занимаясь этим делом, они чувствовали вместе с тем потребность освободить прием от характера чисто внешних правил и старались дать ему требуемое оправдание.
Анализируя метод ближе, мы увидим, что истинный ход действия в нем таков. Во-первых, степенные определения (разумеется, переменных величин), содержащиеся в уравнении, понижаются, приводятся к их первым функциям. Но этим меняется значение членов уравнения.
Поэтому уже нет более уравнения, а возникло лишь отношение между первой функцией одной переменной величины и первой функцией другой переменной. Вместо рх = у2 мы имеем?: 2у или вместо 2ах — х2 =у2 мы имеем а —?: у, что позднее стали обыкновенно обозначать как отношение ^.
Уравнение есть уравнение кривой, а это отношение, совершенно зависящее от него, выведенное (выше — согласно голому правилу) из него, есть, напротив, некоторое линейное отношение, которому пропорциональны известные линии;?: 2у или а —?: у сами «суть отношения прямых линий данной кривой, а именно отношения координат и параметра; но этим мы еще ничего не узнали. Мы желаем знать о других встречающихся в кривой линиях, что им присуще указанное отношение, желаем найти равенство двух: отношений. — Следовательно, является вопрос, во-вторых, какие прямые линии, определяемые природой кривой, находятся в таком отношении? — Но это то, что уже ранее было известно, а именно, что такое полученное указанным путем отношение есть отношение ординаты к подкасательной. Это нашли остроумным геометрическим способом древние; новые же изобретатели открыли только эмпирический прием, как придать уравнению кривой такой вид, чтобы получилось то первое отношение, о котором уже было известно, что оно равно отношению, содержащему в себе ту линию (здесь — подкасательную), которая подлежит определению.
Частью это придание уравнению желаемого вида было
{331}
задумано и проведено методически — диференцирование, — частью же были изобретены воображаемые приращения координат и воображаемый, образованный из этих приращений и такого же приращения касательной характеристический треугольник, дабы пропорциональность отношения, найденного путем понижения степени уравнения, с отношением ординаты и подкасательной была представлена не как нечто эмпирическое, взятое лишь из давно
Лагранж отбросил эту симуляцию и вступил на подлинно научный путь; его методу мы обязаны тем, что усмотрели, в чем дело, так как он состоит в том, чтобы отделить друг от друга те два перехода, которые следует сделать для решения задачи, и рассматривать и доказывать каждую из этих сторон отдельно. Одна часть этого решения — мы при более близком указании хода действия продолжаем пользоваться как примером элементарной задачей нахождения подкасательной — теоретическая или общая часть, а именно, нахождение первой функции из данного уравнения кривой, регулируется особо; эта часть дает некоторое линейное отношение, следовательно, отношение прямых линий, встречающихся в системе определения кривой. Другая часть решения состоит в нахождении тех линий в кривой, которые находятся в указанном отношении. Это теперь осуществляется прямым путем (Theorie des Fonct. Anal., р. II, chap. И), т. е. не прибегая к характеристическому треугольнику, а именно, не делая допущения о бесконечно малых дугах, ординатах и абсциссах и не давая им определений dy и dx, т. е. членов указанного отношения, и не устанавливая вместе с тем непосредственно значения равенства этого отношения с самими ординатой и подкасательной. Линия (равно как и точка) имеет свое определение лишь постольку, поскольку она составляет
{332}
сторону некоторого треугольника, и определение точки имеется лишь в треугольнике. Это, скажем мимоходом, есть основное положение аналитической геометрии, которое приводит к координатам, или, что то же самое, в механике к параллелограмму сил, именно поэтому совершенно не нуждающемуся в многочисленных стараниях доказать его. — Подкасательная теперь принимается за сторону треугольника, другими сторонами которого являются ордината и соответствующая ей касательная. Последняя как прямая линия имеет своим уравнением p = aq (прибавление + b бесполезно для определения и делается лишь ради излюбленной всеобщности); определение отношения ^ есть а, коэфициент величины q, который есть соответственная первая функция уравнения, но который должен вообще рассматриваться лишь как а= —, т. е., как сказано, как существенное определение прямой линии, составляющей касательную к данной кривой. Далее, поскольку берется первая функция уравнения кривой, она есть также определение некоторой прямой линии; далее, так как р, одна координата первой прямой линии, и у, ордината кривой, — берутся как тождественные, так как, стало быть, принимаются, что точка, в которой указанная принимаемая как касательная первая прямая линия соприкасается с кривой, есть вместе с тем начальная точка прямой линии, определяемой первой функцией кривой, то все дело в том, чтобы показать, что эта вторая прямая линия совпадает с первой, т. е. есть касательная, или, выражаясь алгебраически, показать, что так как y = fx и p = Fq, а теперь принимается, что у = р, и, стало быть fx=Fq, то и f? тоже =?7'?. Что употребляемая как касательная прямая и та прямая линия, которая определена из уравнения его первой функцией, совпадают, что эта последняя есть, стало быть, касательная, это показывается с помощью приращения i абсциссы и определяемого через разложение функции приращения ординаты. Здесь, следовательно, также появляется пресловутое приращение; однако следует различать способ, каким оно вводится для только что указанной цели, и раз-
{333}
ложение функции по этому приращению от вышеупомянутого употребления приращения для нахождения диференциаль- ного уравнения и для характеристического треугольника.
Употребление, сделанное здесь, правомерно и необходимо; оно входит в круг геометрии, так как геометрическое определение касательной как таковой требует, чтобы между нею и кривой, с которой она имеет одну общую точку, не могло быть другой прямой линии, также проходящей через эту точку. Ибо с принятием этого определения качество касательной или не-касательной сводится к различию по величине, и касательной оказывается та линия, на которую приходится исключительно с точки зрения того определения, которое здесь важно, наибольшая, малость. Эта, на первый взгляд, лишь относительная малость не содержит в себе ничего эмпирического, т. е. ничего зависящего от определенного количества как такового; она положена качественно природой формулы, если различие того момента, от которого находится в зависимости долженствующая быть сравниваемой величина, есть различие степени; так как последнее сводится к / и?2 и так как /, которое ведь в конце концов должно означать некоторое число, следует представлять затем как дробь, то i само по себе меньше, чем i, так что даже представление, что можно приписывать i 'любую величину, здесь излишне и даже неуместно. Именно поэтому доказательство большей малости не имеет ничего общего с бесконечно малым, и последнее следовательно отнюдь не должно появляться здесь.
Хотя бы только за его красоту и за ныне скорее забытую, но вполне заслуженную славу, которой он пользовался, я хочу здесь еще сказать о декартовом методе касательных; он, впрочем, имеет также отношение к природе уравнений, о которой мы должны будем затем сделать еще дальнейшее замечание. Декарт излагает этот самостоятельный метод, в котором требуемое линейное определение также находится из той же производной функции, в своей и в других отношениях оказавшейся столь плодотворной геометрии (Oeuvres compl. ed. Cousin, tom. V, liv. II, p. 857 ss.), уча в ней о великой основе природы