Наука логики
Шрифт:
Лагранж и в этой части исчисления столь же «мало соглашался отделаться от трудности, которую представляли эти проблемы, рассмотренным гладким способом путем принятия вышеуказанных прямых допущений. Для разъяснения сущности дела будет полезно привести здесь также и некоторые детали его приема на немногих примерах. Этот прием ставит себе как раз задачей отдельно доказать, что между частными определениями некоторого математического целого, например некоторой кривой, имеет место отношение первоначальной функции к производной. Но в силу природы самого отношения, приводящего в связь в некотором математическом предмете кривые с прямыми линиями, линейные измерения и функции с поверхностно-плоскостными измерениями и их функцией и т. д., приводящего, следовательно, в связь качественно разное, это не может быть выполнено в указанной области прямым путем, и определение, таким образом, можно понимать лишь как середину между некоторым большим и некоторым меньшим. Благодаря этому, правда, само собою снова появляется форма приращения с плюсом и минусом, и бодрое «developpons» («развернем в ряд») снова очутилось на своем месте; но мы уже говорили выше
Выпрямление прямых по способу, показанному Лагранжем, который при этом исходит из архимедовского принципа, интересно тем, что оно проливает свет на перевод архимедовского метода на язык принципа нового анализа, а это позволяет бросить взгляд во внутренний строй и в истинный смысл действия, механически производимого другим путем. Способ действия при этом по необходимости ана-
{346}
логичен вышеуказанному способу. Архимедовский принцип, согласно которому дута кривой больше соответствующей ей хорды и «меньше суммы двух касательных, проведенных в конечных точках дуги, поскольку эти касательные заключены» между этими точками и точкой их пересечения, не дает прямого уравнения. Переводом этого архимедовского основного определения на язык новой аналитической формы служит изобретение такого выражения, которое, взятое само по себе, есть простое основное уравнение, между тем как указанная форма лишь выставляет требование двигаться, совершать переходы до бесконечности «между некоторым слишком большим и некоторым слишком малым, которые каждый раз получают определенную величину, причем в результате такого постоянного движения всегда получаются опять-таки лишь новые слишком большие и слишком малые, но во вое более и более тесных пределах. Посредством формализма бесконечно-малых сразу же создается уравнение dz2 = dx2 — f- dy2. Исходя из указанной основы, лагранжево изложение доказывает, напротив, что величина дуги есть первоначальная функция к некоторой производной функции, характеризующий член которой сам есть функция отношения производной функции к первоначальной функции ординаты.
Так как в способе Архимеда, точно так же, как и позднее в исследовании Кеплером стереометрических предметов, встречается представление о бесконечно-малом, то это обстоятельство слишком часто приводилось в качестве авторитета в пользу того употребления, которое делают из этого представления в диференциальном исчислении, причем не выделялись черты своеобразия и отличия.
Бесконечно-малое означает прежде всего отрицание определенного количества как такового, т. е. так называемого конечного выражения или той завершенной определенности, которой обладает определенное количество как таковое.
И точно так же в последующих знаменитых методах Валериуса, Кавальери и др., основанных на рассмотрении отношений геометрических предметов, основным определением является положение о том, что определенное количество,
{347}
как определенное количество таких определений, которые ближайшим образом рассматриваются лишь в отношении, оставляется для этой цели в стороне, и эти определения должны быть принимаемы сообразно с этим за не имеющие величины (Nicht-Grosses). Но отчасти этим не познано и «не выделено то утвердительное вообще, которое лежит за исключительно отрицательным определением и «которое выше оказалось, говоря абстрактно, качественной определенностью величины, состоящей, говоря более определенно, в степенном отношении; отчасти же, поскольку само это отношение в свою очередь включает в себя множество ближе определенных отношений, как например, отношение между некоторой степенью и функцией, получающейся в результате ее разложения в ряд, они должны были бы быть в свою очередь обоснованы всеобщим и отрицательным определением того же бесконечно-малого ив выведены из него. В только что приведенном изложении Лагранжа найдено то определенное утвердительное, которое заключается в архимедовом способе развертывания задачи, и тем самым приему, обремененному неограниченным выхождением, дана его настоящая граница. Величие нового изобретения, взятого само по себе, и его способность разрешать до того времени неприступные задачи, а те задачи, которые и ранее были разрешимы, разрешать более простым способом, — это величие следует видеть исключительно в открытии отношения первоначальной функции к так называемой производной функции и тех частей математического целого, которые находятся в таком отношении.
Данное нами изложение взглядов можно считать достаточным для нашей цели, заключающейся в том, чтобы подчеркнуть своеобразие того отношения величин, которое служит предметом рассматриваемого здесь особого вида исчисления. Излагая эти взгляды, мы могли ограничиться простыми задачами и способом их решения; и ни цели, которая исключительно имелась здесь в виду (а именно: установить определенность понятия рассматриваемых определений), ни силам автора не соответствовало бы обозреть весь объем так называемого приложения диференциального и интеграль-
{348}
ного исчисления и завершить индукцию, гласящую, что найденный принцип лежит в основании этих видов исчисления, сведением всех их задач и решений последних к этому принципу. Но изложенное достаточно показало, что, как каждый особый вид исчисления имеет своим предметом особую определенность или особое отношение величины и такое отношение конституирует сложение, умножение, возвышение в степень и извлечение корня, счет посредством логарифмов, рядов и т. д., — точно так же обстоит дело и с ди- ференциальным и интегральным исчислением; для того отношения, которое присуще этому исчислению, наиболее подходящим названием было бы отношение
{349}
ства; ряд, так как он на самом деле не есть то, что требуется, приводит к некоторой избыточности, вновь отбросить которую стоит лишнего труда. Этой необходимостью лишнего труда страдает также и «метод Лагранжа, который вновь прибег преимущественно к форме ряда, хотя благодаря именно этому методу в том, что называют приложением, выступает истинное своеобразие высшего анализа, так как, но втискивая в предметы форм dx,dy и т. д., метод Лагранжа прямо указывает ту часть этих предметов, которой свойственна определенность производной функции (функции развертывания), и этим обнаруживает, что форма ряда вовсе не есть то, о чем здесь идет речь *.
* В вышеприведенной критике (Jahrb. fur wissensch. Krit., Bd. II, 1827, Nr. 155, 6 и сл.) помещены интересные высказывания основательного ученого специалиста г. Шпера, приведенные из его «Principien des Fluentenkalkuls», Braunschweig, 1826, касающиеся именно одного из обстоятельств, существенно способствующих внесению в диферсн- циальное исчисление темноты и ненаучности, и согласующиеся со сказанным нами относительно того, как обстоит вообще дело с теорией этого исчисления. «Чисто арифметических исследований, — говорится там, — которые, правда, из всех подобных больше всего имеют отношение к диференциальному исчислению, не отделили от собственно диферсн- циального исчисления, и даже принимали, как например, Лагранж, эти исследования за самую суть, между тем как на последнюю смотрели лишь как на их приложения. Эти арифметические исследования обнимают собою правила диференцирования, вывод теоремы Тейлора и т. д. и даже различные методы интегрирования. Дело же обстоит как раз наоборот: эти приложения суть именно то, что составляет предмет собственно дифе- ренциального исчисления, все же те арифметические рассуждения (Entwicklungen) и действия оно предполагает известными из анализа». — Мы показали, как у Лагранжа отделение так называемого приложения от приема общей части, исходящего из рядов, служит именно к тому, чтобы сделать явственным своеобразное дело диференциального исчисления, взятого само по себе. Но ввиду интересного усмотрения автора, что именно так называемые приложения и составляют предмет собственно диференциального исчисления, нужно удивляться, каким образом он впадает в (приведенную там же) формальную метафизику непрерывной величины, становления, течения и т. д., и' еще хочет даже умножить этот баласт; эти определения формальны потому, что они суть лишь общие категории, не указывающие именно специфической стороны дела, которую следовало погнать и абстрагировать из конкретных учений, из приложений.
{360}
Примечание 3 Еще другие формы, находящиеся в связи с качественной определенностью величины Бесконечно-малое диференциального исчисления есть в своем утвердительном смысле качественная определенность величины, а об этой последней мы показали ближе, что она в этом исчислении наличествует не только вообще как степенная определенность, но как особенная степенная определенность отношения некоторой степенной функции к степенному члену разложения (Entwicklungspotenz) (51a).
Но качественная определенность имеется также еще и в дальнейшей, так сказать, более слабой форме, и эта последняя, равно как связанно© с нею употребление бесконечно» малых и их смысл! в этом употреблении, должны еще быть рассмотрены в настоящем примечании.
Исходя из предшествующего, мы должны в этом отношении сперва напомнить, что различные степенные определения выступают с аналитической стороны прежде всего таким образом, что они оказываются лишь формальными и совершенно однородными, означают числовые величины, которые как таковые не имеют вышеуказанного качественного различия друг от друга. Но в приложении к пространственным предметам аналитическое отношение являет себя во всей своей качественной определенности, как переход от линейных к плоскостным определениям, от прямолинейных к криволинейным определениям и т. д. Далее, это приложение влечет за собой то последствие, что пространственные предметы, согласно своей природе данные в форме непрерывных величин, понимаются, как дискретные, — плоскость, значит, понимается, как множество линий, линия, как множество точек и т. д. Единственный интерес такого разложения состоит в определении самих точек, на которые разлагается линия, линий, на которые разлагается плоскость, и т. д., чтобы, исходя из такого определения, иметь возможность двигаться далее аналитически, т.-е., собственно говоря, арифметически; эти исходные пункты представляют собой для искомых определений величины