Невидимая Вселенная. Темные секреты космоса
Шрифт:
Сложность в том, что эти волны трудно измерить. Требуются точные наблюдения за очень многими галактиками. Таким образом, стандартная галактическая линейка не была открыта до 2005 года. В то время в рамках проекта Sloan Digital Sky Survey (Слоуновский цифровой обзор неба) была проанализирована выборка из почти 50 000 галактик, и в итоге ученым удалось распознать их волновую структуру. Позже волны наблюдались и в других проектах, так что космическая сверхлинейка была нанесена на карту с завидной точностью. Пока что наблюдения очень хорошо согласуются с измерениями сверхновых. Угловое расстояние и сверхновые помогают нам измерить примерно одно и то же, но методы и возможные ошибки в корне различаются. Похоже, темная энергия никуда уходить
Есть еще один эффект, который мне бы хотелось упомянуть. Во-первых, он кажется мне забавным. А во-вторых, он показывает следы темной энергии не так, как сверхновые и стандартная линейка. Впоследствии он даже получил довольно звучное название — эффект Сакса — Вульфа.
Представьте, что быстро несетесь на лыжах. Вы резко отталкиваетесь, поэтому, скользя по лыжне, практически не теряете скорость. Посреди лыжни течет ручей. Перед тем, как пересечь ручей, лыжня резко опускается на несколько метров вниз. По другую сторону ручья она снова поднимается. Вы окажетесь на той же высоте, что и до перехода через ручей. Как будет меняться ваша скорость? По пути вниз к ручью скорость увеличится, и у вас будет максимальная скорость, когда вы пересечете ручей в нижней точке долины. На пути вверх вы потеряете скорость. Если у вас идеальное скольжение, то скорость, с которой вы закончите переход долины, будет такой же, как и до того, как вы подошли к ней.
А теперь заменим лыжника на фотон, световую волну, которая скользит по Вселенной. Наш фотон от реликтового излучения летит к Земле. Как и лыжник, фотоны могут наталкиваться на неровности и склоны на своем пути. Как мы помним, фотоны подвластны гравитации. Когда фотон движется в том же направлении, что и сила тяжести, он, следовательно, будет катиться под гору. Скорость света всегда одинакова, но энергия у фотона будет возрастать. Более высокая энергия соответствует более коротким длинам волн, то есть синему смещению. Соответственно, если фотон движется навстречу силе тяжести, он потеряет энергию, что приведет к красному смещению.
Факт влияния гравитации на световые волны доказан экспериментально. Впервые эффект изучили в знаменитом эксперименте Паунда и Ребки в 1959 году. В ходе него гамма-фотоны отправляли вниз с башни высотой 22,5 метра. Когда фотоны достигали нижней части башни, длина волны уменьшалась.
Во Вселенной этот эффект возникает, когда фотоны проходят сквозь обширные области, где плотность галактик больше, так называемые сверхскопления, то есть скопления скоплений галактик. При движении к центру сверхскопления фотон получит больше энергии и испытает синее смещение. А когда приходит время удаляться, на смену приходит красное смещение. Во Вселенной без темной энергии «подъем в гору» уравновесил бы «спуск». В этом случае длина волны фотона, вошедшего в сверхскопление, не изменится к моменту его выхода. Ситуация точь- в-точь как с быстро скользящим лыжником: после того, как он минует долину с небольшим ручьем, скорость станет прежней.
Но что происходит во Вселенной, в которой темная энергия все же существует? Сверхскопления, как правило, обладают протяженностью в несколько сотен миллионов световых лет, а потому фотону потребуется несколько сотен миллионов лет, чтобы пройти их. За это время произойдет синее смещение. Но по мере движения фотона темная энергия будет отталкивать друг от друга скопления галактик в сверхскоплении. Подъем фотона в гору, таким образом, отнимет у него меньше энергии, чем дал спуск. В результате у фотона, покидающего сверхскопление галактик, частично сохранится синее смещение. И снова проведем аналогию с ручьем в долине: это как если бы под землей сидел тролль и поднимал лыжную трассу вверх, пока человек находится в нижней точке. Тогда подъем будет короче, чем спуск, и скорость после пересечения долины увеличится.
А как этот эффект проявляет себя на небе? Давайте снова взглянем на карту реликтового излучения. Эту карту можно сравнить с составленными нами картами галактик. Неужели фотоны, прошедшие через сверхскопления галактик, становятся немного более «синими»? Да. Статистика так и говорит. Это еще один аргумент в пользу Вселенной с темной энергией — аргумент, основанный на совершенно иных механизмах, чем те, которые мы рассматривали ранее в книге.
Как и в случае с темной материей, ускоряющаяся Вселенная тоже опирается на широкий спектр различных наблюдений. Мы полагаем, что ускорение вызвано темной энергией с отталкивающей гравитацией. Но что на самом деле представляет собой темная энергия?
Мы уже рассматривали космологическую постоянную Л. Эта идея так соблазнительно проста, ведь Л является своеобразным свойством пространства. А еще она прекрасно согласуется со всеми вышеупомянутыми наблюдениями. Тем не менее у теории есть свой скелет в шкафу — проблема космологической постоянной: почему Л настолько меньше теоретических предсказаний?
Еще одна концептуальная головная боль, связанная с Л, — это то, что мы называем проблемой совпадения. В сегодняшней Вселенной количество темной энергии сопоставимо с количеством материи. Конечно, совпадает не идеально: мы помним, что темная энергия составляет приблизительно 70 процентов. Но все же если темная энергия — это космологическая постоянная, которая существует совершенно независимо от материи во Вселенной, то почему ее, например, не в 100 миллиардов раз больше? Или в 100 миллиардов раз меньше? Может показаться странным, что два физически совершенно независимых явления оказались сопоставимы по размеру. Если темная энергия — это константа, то в первый период жизни Вселенной в ней будет доминировать материя. Потом несколько миллиардов лет будет продолжаться период, когда масштабы этих двух явлений сопоставимы. После этого господство во Вселенной уже окончательно перейдет к космологической постоянной. Разве не странно, что мы оказались в той очень маленькой части истории Вселенной, где темная материя и темная энергия встречаются в сопоставимых количествах?
С проблемами совпадения и космологической постоянной связана еще и проблема тонкой настройки Вселенной. Будь космологическая постоянная хоть чуточку больше, и структуры вроде галактик, звезд и планет просто не успели бы сформироваться до того, как отталкивающая гравитация захватила бы власть и начала мешать слиянию материи. Если темная материя на самом деле — космологическая постоянная, то, похоже, нам невероятно повезло, что она именно такая. В этом и заключается суть тонкой настройки Вселенной.
(Проблема тонкой настройки касается не только космологической постоянной, но и ряда других физических величин. Будь они не в точности такими, какие есть, нас бы тут не было. Подробнее об этом в последней главе.)
Проблемы космологической постоянной, совпадения и тонкой настройки Вселенной — весьма веские причины не ограничиваться моделью космологической постоянной для объяснения ускоряющегося расширения Вселенной. Но чтобы начать поиски другого претендента на роль темной энергии, необходимо сначала обосновать, почему космологической постоянной не существует. Многие физики считают, что легче принять тот факт, что космологическая постоянная равна нулю, чем объяснять, что она ужасно мала, но не равна нулю. Они полагают, что в белее совершенной физической теории эффект флуктуаций вакуума полностью исчезнет. И потому они считают более логичным поискать другую форму темной энергии и отталкивающей гравитации, нечто никак не связанное с квантовыми флуктуациями вакуума. В идеале мы должны найти модель, решающую концептуальные проблемы, о которых я говорил выше, или по крайней мере уменьшающую их количество. Самым популярным решением является введение понятия квинтэссенции.