Чтение онлайн

на главную

Жанры

Нобелевские премии. Ученые и открытия
Шрифт:

Эти открытия значительно расширили представления о веществе и поставили вопрос: почему Вселенная построена из вещества и нет ли в ней областей, состоящих из антивещества? От ответа на него будет зависеть, какую модель эволюции Вселенной следует избрать. За открытие антипротона Чемберлен и Сегре были удостоены в 1959 г. Нобелевской премии по физике.

Эмилио Сегре осуществил немало интересных научных, исследований и открытий, принесших ему известность.

Некоторые из его коллег высказали сожаление, что Нобелевская премия была присуждена ему за открытие антипротона, т. е. за результат, который, по их мнению, доступен любому при наличии такой машины, как бетатрон; они полагали, что Сегре был достоин этой награды

и за другие, более фундаментальные результаты.

Исследование частиц, число которых благодаря использованию ускорителей непрерывно возрастало, требовало новых методов их наблюдения и идентификации. Вслед за камерой Вильсона и ее усовершенствованной Блэкеттом модели, счетчиками Гейгера — Мюллера [3] и ядерными фотоэмульсиями Пауэлла пришел новый метод наблюдений, основанный на эффекте Черепкова. Явление, скрывающееся под этим названием, было давно известно ученым, свечение кристаллов и жидкостей под действием излучения наблюдалось неоднократно. Ещё в 20-е годы предпринимались попытки объяснить его механизм, но проблема была решена лишь после тщательных исследований советского ученого, начатых в 1932 г.

3

Ханс Гейгер в 1908 г. определил заряд электрона и вместе с Э. Резерфордом изобрел счетчик заряженных частиц, который в 1928 г. был им усовершенствован вместе с В. Мюллером. — Прим. ред.

Сначала Павел Алексеевич Черенков, 28-летний аспирант академика Сергея Ивановича Вавилова, занимался исследованием люминесценции растворов урановых солей под действием гамма-лучей. В 1934 г. Черенков заметил, что наряду с обычной люминесценцией, вызываемой гамма лучами, возникает свечение иного характера. В 1936 г. он установил фундаментальное свойство этого излучения — его направленность.

Фактический материал, полученный Черенковым, позволил двум советским физикам, Игорю Евгеньевичу Тамму и Илье Михайловичу Франку, создать в 1937 г. теорию эффекта Черенкова. Оказалось, что излучение возникает при прохождении частицы через кристалл или жидкость со скоростью, превышающей скорость света в данной среде. Свет распространяется со скоростью 300 000 км/с только в вакууме. В воде, например, скорость света составляет лишь 200 000 км/с, и законы физики вполне допускают возможность движения какой-либо частицы со скоростью большей, чем эта. Электромагнитные волны, образующиеся при таком сверхсветовом движении частицы, имеют форму конуса, в вершине которого находится частица; зная угол у вершины конуса, можно определять скорость ее движения Черенков, будучи прежде всего экспериментатором, предложил использовать открытый им эффект для регистрации заряженных частиц. Этим методом и был зарегистрирован антипротон. Подготавливается грандиозный международный эксперимент, в котором планируется установить черенковские счетчики на дне моря для регистрации частиц высоких энергий, в том числе и нейтрино. Открытие Черенкова и предложенная Таммом и Франком теория этого эффекта принесли им в 1958 г. Нобелевскую премию по физике.

С появлением новых сверхмощных ускорителей стало ясно, что камера Вильсона свои возможности исчерпала. На смену ей пришел новый прибор, сконструированный в 1952 г. американским физиком Доналдом Артуром Глазером. Его пузырьковая камера состоит из резервуара с жидким водородом, находящимся при температуре, близкой к точке кипения. Проходя через него, заряженные частицы нарушают равновесие, и вдоль их пути образуются пузырьки газа. Хорошо известно, что жидкости имеют плотность значительно выше, чем газы. Чтобы создать такой эффект, как и в жидком водороде, заряженная частица должна пройти в газе в тысячу раз большее расстояние. На практике это означает, что

след длиной 10 см в пузырькой камере равнозначен 100-метровому следу в камере Вильсона.

Такое тысячекратное увеличение возможностей позволяет значительно более длительное время следить за движением частиц и их превращениями. Современные пузырьковые камеры так велики, что фотокамера не в силах охватить их во всю глубину, поэтому для получения траекторий частиц иногда применяется голография, дающая трехмерное изображение траекторий даже очень короткоживущих частиц.

Доналд, Глазер, исследователь очень широкого диапазона, занимавшийся изучением элементарных частиц, космических лучей, молекулярной биологии, за создание пузырьковой камеры получил в 1960 г. Нобелевскую премию по физике.

Первая большая пузырьковая камера была сконструирована американским физиком Луисом Уолтером Альваресом. Он усовершенствовал конструкцию камеры, приспособив ее для количественных измерений. В 1955 г. в Радиационной лаборатории им. Э.О. Лоуренса в Беркли Альварес начал проводить обширные эксперименты и открыл десятки новых, неизвестных элементарных частиц. К 1960 г. это изобилие частиц стало беспокоить физиков — казалось маловероятным, чтобы было так много элементарных «кирпичиков» вещества.

Большая часть частиц, открытых Альваресом, имела исключительно короткую продолжительность жизни. Было установлено, что их образование объясняется резонансными явлениями. Например, нуклон, соединяясь с пи-мезоном, образует систему, которая ведет себя как новая частица, но быстро распадается. Сейчас известны сотни частиц-резонансов, и большая заслуга в этом принадлежит группе Альвареса. За обширные исследования, которые велись на протяжении более 10 лет, этот ученый получил в 1968 г. Нобелевскую премию по физике.

Уже в. 50-е годы стали накапливаться данные, ставящие под сомнение концепцию об элементарности известных тогда частиц. Заговорили об их структуре. В этой области работал Роберт Хофстедтер, профессор Станфордского университета. В 1955 г. он начал эксперименты по исследованию структуры нуклонов с помощью большого линейного ускорителя в Станфорде. Пучок электронов энергией в 1 млрд. эВ использовался для бомбардировки протонов и нейтронов. Картина рассеяния очень напоминала ту, которую в свое время наблюдал сотрудник Резерфорда. Марсден при изучении рассеяния альфа-частиц золотой фольги. Тогда, в 1911 г., в результате этих экспериментов было установлено, что атом имеет ядро. Эксперименты Хофстедтера показали, что протон и нейтрон также имеют «ядро», окруженное облаком из пи-мезонов, так называемой «мезонной шубой». За открытие внутренней структуры нуклонов Роберт Хофстедтер был удостоен в 1961 г. Нобелевской премии по физике, разделив ее с Рудольфом Мёссбауэром, открывшим известный эффект, названный его именем.

Большое число частиц, обнаруженных в 50-е годы, заставило ученых заняться поиском системы для их классификации. Предполагалось, что протон и нейтрон следует рассматривать как фундаментальные частицы, из которых построены остальные. В свете этого пи-мезон, например, представляли как протон и нейтрон в связанном состоянии.

Эти представления были развиты в 1956 г. Сёити Сакатой, который принял за фундаментальные частицы протон, нейтрон и ламбда-нуль-гиперон. Эти частицы иногда называют сакатанами.

Через несколько лет оказалось, что Саката действительно уловил определенные закономерности в мире частиц. Его теория получила дальнейшее развитие и, по существу, была поставлена на новую основу Марри Геллманом и Джорджем Цвейгом. В 1964 г. они выдвинули гипотезу субчастиц, из которых построены нуклоны, мезоны и гипероны. Это — одно из самых последних и важнейших событий в физике, которое заслуживает самостоятельного рассмотрения.

Кварки. Великое объединение

Поделиться:
Популярные книги

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Имперец. Том 1 и Том 2

Романов Михаил Яковлевич
1. Имперец
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Имперец. Том 1 и Том 2

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4

Хочу тебя любить

Тодорова Елена
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Хочу тебя любить

(Не) Все могут короли

Распопов Дмитрий Викторович
3. Венецианский купец
Фантастика:
попаданцы
альтернативная история
6.79
рейтинг книги
(Не) Все могут короли

Темный Лекарь 5

Токсик Саша
5. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 5

Виконт. Книга 1. Второе рождение

Юллем Евгений
1. Псевдоним `Испанец`
Фантастика:
фэнтези
боевая фантастика
попаданцы
6.67
рейтинг книги
Виконт. Книга 1. Второе рождение

Провинциал. Книга 2

Лопарев Игорь Викторович
2. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 2

Газлайтер. Том 4

Володин Григорий
4. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 4

Кодекс Охотника. Книга ХХ

Винокуров Юрий
20. Кодекс Охотника
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга ХХ

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Отмороженный 5.0

Гарцевич Евгений Александрович
5. Отмороженный
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Отмороженный 5.0

Идеальный мир для Социопата 7

Сапфир Олег
7. Социопат
Фантастика:
боевая фантастика
6.22
рейтинг книги
Идеальный мир для Социопата 7