Ньютон. Закон всемирного тяготения. Самая притягательная сила природы
Шрифт:
Возможно, Ньютон считал обнаружение искаженных глав о Троице самым важным и значительным из своих достижений. Уэстфол описывает это следующим образом:
«Несложно представить, какое гнетущее чувство испытывал Ньютон, сделав это открытие и вынужденный посвящать свое внимание менее значительным занятиям, таким как оптика или математика, в то время как на его плечах покоился груз ответственности за новую интерпретацию центральной идеи всей европейской цивилизации».
За безупречной и успешной научной карьерой, от молодого Лукасовского профессора в Кембридже до члена парламента Англии, от скрупулезного чиновника казначейства до всесильного президента Королевского общества, стоит тайна, которую невозможно было раскрыть и которую мы знаем благодаря рукописям, проданным с аукциона «Сотбис». Убежденное арианство, которое сопровождало Ньютона всю жизнь начиная с молодости, могло стать причиной отстранения
МУКИ СОВЕСТИ
Возможно, что первые занятия теологией, начатые примерно в 1672 году, были связаны с тем фактом, что пост в Тринити-колледже обязывал Ньютона принять сан англиканского священника. Срок принятия обетов заканчивался в 1675 году, а к тому времени Ньютон уже был убежденным арианином. Особая ирония заключается и в том, что колледж в Кембридже, где Ньютон – ярый противник идеи Троицы – провел три с половиной десятилетия своей жизни, носит имя Святой и Неделимой Троицы. Обязанный принять обеты, Ньютон оказался перед серьезной моральной дилеммой. По некоторым сохранившимся записям можно угадать, что после того, как мягкие попытки уклониться от обета не дали результата, Ньютон собирался отвергнуть должность, не сообщая никому о причинах отказа. Однако вопрос волшебным образом решился сам собой: в последний момент пришло королевское разрешение, освобождавшее Лукасовского профессора от принятия обетов в случае его нежелания. Обратите внимание на нюанс: имя Ньютона не упоминалось, и говорилось, что это право имеет тот, кто возглавляет лукасовскую кафедру, кем бы он ни был. Возможно, за этой привилегией стояла фигура Исаака Барроу.
Однако интерес Ньютона к Библии и теологии распространялся далеко за пределы интерпретации идеи Троицы. На теологические темы он написал многие тысячи страниц. Его работы включали детально описанные исследования пророчеств (Ньютон проявлял определенный, хотя и не чрезмерный, интерес к дате второго пришествия Христа), древних библейских царств и даже подробную реконструкцию храма Соломона с его точными размерами и описаниями предметов культа, упомянутых в священных текстах.
Две из его книг, опубликованных наследниками после смерти ученого, включали ничтожную часть записей Ньютона о пророчествах и хронологии царств: The chronology of Ancient Kingdoms amended («Исправленная хронология Древних Царств», 1728) и Observations upon the Prophecies of Daniel and the Apocalypse of St.John («Замечания на книгу пророка Даниила и Апокалипсису Святого Иоанна», 1733). Это были единственные источники, рассказывающие об увлечении Ньютона теологией, пока в 1936 году аукцион не привлек внимание к наследию ученого.
Любопытна сама история появления The chronology («Хронологии»). Принцесса Уэльская попросила в 1716 году копию хронологических исследований Ньютона о царствах Ветхого Завета. Королевская просьба заставила ученого пойти на уступку: работы необходимо было вначале очистить от возможных арианских утверждений. Ньютон решил вручить принцессе лишь очерк, который в итоге был опубликован. Выдержки вызвали суровую критику, особенно во Франции, и Ньютон в качестве ответа решил напечатать трактат полностью. Он умер в марте 1727 года, занимаясь подготовкой книги к изданию.
ГЛАВА 4 Разгадка тайны света и цвета
Хотя Ньютон вошел в историю науки благодаря своему закону всемирного тяготения, его вклад в изучение оптики был не менее гениальным. Ученый преодолел тернистый путь, ведущий к разгадке природы света, он объяснил, из чего состоит цвет, построил своими собственными руками первый телескоп-рефлектор…
И все это благодаря экспериментам, всеобъемлющим и одновременно простым.
Другая великая научная книга Ньютона заметно отличается от «Математических начал натуральной философии»; она носит название Opticks: or a Treatise of the Reflexions, Refractions, Inflexions and Colours of Light («Оптика, или трактат об отражениях, преломлениях, изгибаниях и цветах света»). «Математические начала натуральной философии» – это завершенный синтез знания о земной и небесной механике, написанный математическим языком настолько сложным, насколько и закрытым, и поэтому понимаемый лишь специалистами. «Оптика», напротив, может считаться экспериментально несовершенной работой и даже неудавшейся, написанной без какой-либо математической поддержки. Однако она со всеми своими недочетами доступна даже тем, кто не имеет больших познаний в предмете. Наибольшее внимание привлекает ее часть, посвященная природе света и цвета, однако книга содержит большое количество разнообразных размышлений,
Хотя «Оптика» появилась только в 1704 году, почти через два десятилетия после «Математических начал натуральной философии», изучение природы света и цвета было одним из самых первых интересов английского гения. Его творческая работа в сфере оптики закончилась примерно в 1670 году, после этого он в основном разъяснял свои теории и результаты экспериментов: и в 1672 году, когда представил свою первую работу в этой сфере в «Философских трудах» Королевского общества, и в последнее десятилетие XVII века, когда занимался составлением «Оптики».
Представления Декарта о свете как вибрации частиц сделали среди ученых XVII века распространенной корпускулярную теорию света.
ОТРАЖЕНИЕ И ПРЕЛОМЛЕНИЕ
В ньютоновской физике свет состоит из частиц, корпускул, и распространяется по прямой линии, а не в виде волн. Сегодня считается, что свет имеет одновременно как корпускулярную, так и волновую природу. В материальных средах свет всегда движется по прямой линии, хотя на границе сред его скорость меняется, что вызывает эффект преломления. На рисунке представлены разные ситуации, которые можно наблюдать, когда луч света, двигающийся по траектории, пересекающей однородную среду, достигает поверхности, которая отделяет данную среду от внешней. Если угол падения перпендикулярен поверхности, разделяющей обе среды, луч света продолжит беспрепятственно двигаться по своей траектории (от n1 к n2 ). Если угол падения 1 немного больше, луч пересечет поверхность; хотя новая траектория не будет идеально совпадать с предыдущей, она образует новый угол 2 с перпендикуляром. Оба угла соотносятся по закону Снеллиуса: n1 sin(1) = n2 sin(2), где n1 и n2 – индексы преломления обеих сред, зависящие от скорости, с которой движется свет, когда их пересекает. Таким образом, можно вывести, например, что если среда оказывает значительное сопротивление прохождению света, она будет иметь высокий индекс преломления и, значит, угол падения 1 будет меньше, чем угол преломления 2 . Этот феномен мы всегда наблюдаем, опуская трубочку в стакан с водой: кажется, будто она становится толще. По этой же причине бассейны всегда кажутся более глубокими, чем на самом деле. На рисунке
также можно наблюдать, что часть луча света отражается от поверхности и возвращается в исходную среду. Угол отражения также подчиняется закону Снеллиуса, но поскольку в этом случае индекс преломления среды тот же, оба угла одинаковы. Если мы продолжим уменьшать угол падения 1 , мы придем к пограничной ситуации, когда угол преломления параллелен границе сред. Начиная с этой точки падающий луч уже не способен пересечь данную поверхность и отражается обратно в первую среду. В телекоммуникациях этот принцип используется, чтобы посылать световые лучи через оптическое волокно с высоким индексом преломления.
Тогда считалось, что луч белого света имеет однородную структуру; а в вопросе образования цвета царила полная неопределенность. Роберт Гук в Англии и Христиан Гюйгенс на континенте уточнили декартову формулировку. Гюйгенс, в частности, ввел идею вторичных волн: «Каждая частица материи, на которую падает волна, сообщает полученное движение всем окружающим ее частицам. Таким образом, вокруг каждой частицы формируется волна, в которой эта самая частица является центром». При помощи этой концепции он смог вывести известные нам законы отражения и преломления света. Однако ответа на главное возражение против волновой природы света не было: как объяснить прямолинейное распространение световых лучей? Ответ будет найден только в XIX веке Огюстеном Френелем (1788-1827), который использовал в своих исследованиях теорию интерференции волн Томаса Юнга (1773-1829).