dwStyle, X, Y, nWidth, nHeight, hWndParent, hMenu,
hInstance, lpParam);
Set8087CW(FPUCW);
end;
Модуль
Windows
импортирует функцию
CreateWindowExA
из библиотеки user32.dll, но дает ей измененное название и не показывает ее в своем интерфейсе. Вместо этого он экспортирует другую функцию с названием
CreateWindowEx
(и аналогичную с названием
CreateWindowExA
), которая является оберткой над настоящей
CreateWindowExA
и обеспечивает сохранение значения управляющего слова FPU. Аналогичным способом импортируется и Unicode-вариант функции. Таким образом, стандартные библиотеки обеспечивают вызов безопасного варианта
CreateWindowEx
в любой программе.
Примечание
В модуле
Windows
можно обнаружить еще одну интересную деталь: функции
CreateWindowA
и
CreateWindowW
из библиотеки user32.dll этим модулем вообще не импортируются. Вместо этого одноименные обертки вызывают импортированные функции
_CreateWindowExA
и
_CreateWindowExW
, передавая им 0 в качестве значения параметра
dwExStyle
.
3.2.12. Машинное эпсилон
Когда мы имеем дело с вычислениями с ограниченной точностью, возникает такой парадокс. Пусть, например, мы считаем с точностью до трех значащих цифр. Прибавим к числу 1,00 число 1,00·10– 4. Если бы все было честно, мы получили бы 1,0001. Но у нас ограничена точность, поэтому мы вынуждены округлять до трех значащих цифр. В результате получается 1,00. Другими словами, к некоторому числу мы прибавляем другое число, большее нуля, а в результате из-за ограниченной точности мы получаем то же самое число. Наименьшее положительное число, которое при добавлении его к единице дает результат, не равный единице, называется машинным эпсилон.
Понятие машинного эпсилон у новичков нередко путается с понятием наименьшего числа, которое может быть записано в выбранном формате. Это неправильно. Машинное эпсилон определяется только размером мантиссы, а минимально возможное число оказывается существенно меньше из-за сдвига плавающей двоичной точки с помощью экспоненты.
Прежде чем искать машинное эпсилон программно, попытаемся найти его из теоретических соображений. Итак, мантисса типа
Extended
содержит 64 разряда. Чтобы закодировать единицу, старший бит мантиссы должен быть равен 1 (денормализованная запись), остальные биты — нулю. Очевидно, что при такой записи наименьшее из чисел, для которых выполняется условие x > 1, получается, когда самый младший бит мантиссы тоже будет равен единице, т.е. х = 1,00...001 (в двоичном представлении, между точкой и младшей единицей 62 нуля). Таким образом, машинное эпсилон равно х– 1, т.е. 0.00...001. В более привычной десятичной форме записи это будет 2– 63, т.е. примерно 1,084·10– 19.