О связи хаббловой и гравитационной постоянных
Шрифт:
Ну и, в-третьих, если отношение увеличивается, значит разбег замедляющийся. Проходит с отрицательным ускорением, то есть, – в противность второму случаю, где ускорение положительное. Этот третий случай долго обыгрывался в отталкиваемости от стягивающего – во вселенском масштабе – действия наличных масс. Космологическую постоянную отменили, найдя – с подачи Сэлье – галактики разбегающимися из-за первовзрыва, но ведь разбег-то по Сэлье инерционный, и если наложить на него самостягиваемость всей наличной вселенской мат. массы (разнесённые элементы которой всегда и везде продолжают тянуть друг друга – в силу закона всемирного тяготения), то и получится картинка замедляющегося инерционного разбега. Не понимали тут слишком простого: Большой Взрыв не закончился, а исправно продолжается, выражаясь в возникаемости в мат. вселенной всё нового и нового вакуумного пространства, и разбег оттого галактик не инерционный – от давно закончившегося толчка в лице того Взрыва, – а постоянно провоцируемый, чем и способен (начиная с критически большого масштаба, так как масштаб прибавляет ему выраженности) перекрывать самостягиваемость огульной вселенской массы.
Впрочем, этот третий случай – случай притормаживающегося разлёта галактик – не лишён-таки значенья и для нас, с нашей новорелятивистской теорией как провозгласителем ускоряющегося разлёта. Прибытия пространства в масштабе всей мат. вселенной ничто, разумеется,
На моделирующей цифровой конкретике покажем сомневающимся правоту наговоренного нами. Пусть от нас стартуют три тела. Первое со скоростью 2 м/сек, второе – 4 м/сек, третье – 6 м/сек. И всё происходит в духе Сэлье, то есть от старта тела скоростей не меняют, так что расходятся от нас равномерно. Посмотреть нам на них через 3 сек, так первое окажется от нас на расстоянии S = vt= 2 м/сек · 3 сек = 6 м, второе – 12 м, и третье – 18 м. Пусть в этот момент на тела одинаково начала действовать некая ускоряющая причина. Придающая каждому в направлении его движения ускорение a= 0,2 м/сек 2. Посмотрим на тела ещё через 3 сек. Каждое из них, как равноускоренно движущееся, пройдёт дополнительный путь S = at 2 /2= 0,2 · 3 2/2 = 0,9 м. Этот путь дополняет те, которые тела проходят в порядке своей равномерной двигаемости с полученными на старте скоростями: вторые 6 м – первое, вторые 12 м – второе, и вторые 18 м – третье. В итоге, общий путь для первого будет 6 + 6 + 0,9 = 12,9 м, для второго – 12 + 12 + 0,9 = 24,9 м, для третьего – 18 + 18 + 0,9 = 36,9 м. Скорости же у каждого из тел прибавится v = at =0,2 м/сек 2· 3 сек = 0,6 м/сек. Отчего первое будет иметь скорость V 1 =2 + 0,6 = 2,6 м/сек, второе – V 2 = 4 + 0,6 = 4,6 м/сек, и третье – V 3 = 6 + 0,6 = 6,6 м/сек. Соответственно "индивидуальные постоянные Хаббла" для тел (на которые мы смотрим через 6 сек после старта, не забывать!) будут такими: H 1 =2,6 м/сек : 12,9 м = 0,202 сек –1, H 2 = 4,6 м/сек : 24,9 м = 0,185 сек –1, и H 3 = 6,6 м/сек : 36,9 м = 0,179 сек –1. То есть уменьшающимися – как мы и обещали! – у тел по мере роста их от нас удалённости. Подобное уже нам показывал анализ полупараболы – как графика соотносимости скорости с пройденным путём у равноускоренно движущегося тела.
А если бы тела вторые 3 сек не ускорялись, продолжая убегать от нас равномерно? Тогда "индивидуальные постоянные Хаббла" их были бы: H 1 =2 м/сек : 12 м = 1/6 сек –1, H 2 = 4 м/сек : 24 м = 1/6 сек –1, и H 3 = 6 м/сек : 36 м = 1/6 сек –1= 0,167 сек –1. То есть – одинаковая у всех "индивидуальная постоянная Хаббла", как то и должно быть по картине, нарисованной Сэлье в объяснение хаббловых наблюдений.
Ну и – равнозамедляемость тел вторые три секунды. С тем же ускорением в 0,2 м/сек 2. На момент времени 6 сек картина в этом случае будет следующая. Скорости всех трёх тел уменьшатся на уже найденную нами v =0,6 м/сек, и будут V 1 =2 – 0,6 = 1,4 м/сек у первого, V 2 = 4 – 0,6 = 3,4 м/сек у второго, и V 3 = 6 – 0,6 = 5,4 м/сек у третьего. Пройденные телами пути тоже уменьшатся – на величину в 0,9 м. И будут S 1 = 12 – 0,9 = 11,1 м у первого, S 2 = 24 – 0,9 = 23,1 м у второго, и S 3 = 36 – 0,9 = 35,1 м у третьего. Что даёт "индивидуальные постоянные Хаббла": H 1 =1,4 м/сек : 11,1 м = 0,126 сек –1для первого тела, H 2 = 3,4 м/сек : 23,1 м = 0,147 сек –1для второго, и H 3 = 5,4 м/сек : 35,1 м = 0,154 сек –1для третьего. То есть увеличивающиеся по мере рассмотрения всё более далёких тел, как то мы и заявляли.
А закончилось ускорение после шести секунд, чт'o тогда будет? Вернётся ли картина разбега к прописанной Сэлье? Посмотрим и это! Разобрав картину по прошествии девяти секунд. На трёх последних из них – тела шли опять без ускорения. После шести секунд, как помним, скорости их были: V 1 =2,6 м/сек, V 2 = 4,6 м/сек и V 3 = 6,6 м/сек. А пройденные пути, соответственно, были 12,9 м, 24,9 м и 36,9 м. Между шестой и девятой секундами первое тело проходит путь S 1 = 2,6 м/сек x 3 сек = 7,8 м, второе – S 2 = 4,6 x 3 = 13,8 м, и третье – S 3= 6,6 x 3 = 19,8 м. В итоге, S 1 = 12,9 м + 7,8 м = 20,7 м, S 2 = 24,9 + 13,8 = 38,7 м, и S 3 = 36,9 + 19,8 = 56,7 м. Ну а скорости тел через 9 сек те же, что и через 6 сек. Что даёт H 1 = 2,6 м/сек : 20,7 м = 0,145 сек –1, H 2 = 4,6 : 38,7 = 0,119 сек –1, и H 3 = 6,6 : 56,7 = 0,116 сек –1. Как видим, "индивидуальные постоянные Хаббла" наших трёх тел на момент девяти секунд всё же не совпадают! Хотя и показывают большее схождение, чем на моменте шести секунд – сразу после ускорения. Отчего напрашивается разобрать, что будет на момент двенадцати секунд: станет ли схождение ещё б'oльшим? Как подсчитывать, читатель уже знает, так что сразу даю посчитанные результаты: для первого тела получается H 1 =0,091 сек –1, для второго – H 2 =0,088 сек –1, и для третьего – H 3 =0,086 сек –1. Так что да, схождение увеличивается. Это и понятно: скорости – как числители – не растут, а пройденные пути – как знаменатели – всё увеличиваются, но ведь чем больше знаменатель, тем меньше он, так сказать, склонен отличать 2,6 м/сек от 2 м/сек, 4,6 от 4 и 6,6 от 6, при числителях же 2, 4, и 6 дроби равны.
В общем, схождение "индивидуальных постоянных Хаббла" тел после прекращения ускорения увеличивается – с ходом времени, но уравниваются эти их "постоянные" лишь в бесконечном временн'oм пределе. Откуда вывод: если вещественные объекты, наполняющие мат. вселенную, хоть однажды все р'aвно испытали какое-то ускорение, то никогда потом, наблюдая за распределением их скоростей в зависимости от дальности, не сможем отдифференцировать: то ли, действительно, это они когд'a-то испытали ускорение, то ли испытывают его теперь – только что на некую ступень меньшее того возможного былого. Или даже и большее, но ещё мало действовавшее! Или меньшее на целых две таких ступени, зато имевшееся и тогда когда-то, и теперь имеющееся (то есть, не прерывавшееся до сих пор).
Вот такой аналоговый цифровой анализ! Крайне сомневаюсь, что его проводили в 1998 году – что Шмидт, что Перлмуттер, независимо один от другого обнаружившие тогда "неправильную" звезду, и сразу оттого заговорившие об ускоренном разбеге галактик. Чтоб провести такой анализ, мозги должны быть "повёрнуты" в русле нашей новорелятивистской теории. А тогда, в конце девяностых, скорей всего сработала наивная логика. Звезда с некой большой скоростью удаляемости оказалась дальше, чем ей полагается быть по Хабблу? Ну, значит, что-то её дополнительно относило вперёд, да и вся недолга! И коль скоро такая дополнительная относимость – дополнительна к инерци'oнной относимости, то она – нарушенность равномерности отбега звезды в пользу ускоренности, откуда вам и ускоренное разбегание вселенской материи – как факт, ежели такое описанное происходит не с одной этой пронаблюдавшейся сверхновой. Вот и всё, мол. А что "дополнительный относ вперёд" заодно и скорости звезде прибавляет, а не только удаления, и, тем самым, заговорить об ускоренном разбеге возможно лишь на базе гораздо более составных и системных соображений, – это как-то не воспринималось тогда (да не воспринимается и до сих пор!). И не забывать также, что будь такой "более системный" анализ тогда произведён – как это мы только что сделали чуть выше, то всё равно – это ж был бы выход к ускоренности разбега в исходимости из трактовки Сэлье, а она – неверная. Отчего то, к чему на базе неё ты вышел, не имеет права называться верным! Даже если случайно и верн'o. Ну, в силу тех или иных причин совпало с верным.
В общем, у Перлмуттера и Шмидта – как самочинных теоретиков – всё вышло так, как это иногда бывает: ткнул пальцем в небо, и попал в нужную точку! А мне тут слегка обидно: к правильному пониманию вселенской расширительности, из которого в конечном счёте вытекают все эти ускорительности, я пришёл ещё в 1985 году. Представляю реакцию, если б заговорить тогда о таком! Единицы бы разгневались, десятки посмеялись, а большинство бы просто не восприняли. Коль неоднозначно и дёргано воспринимается ещё даже и теперь тот намёк на всеобщее ускорение, какой дают экспериментальные (ну, наблюденческие) факты от Шмидта и Перлмуттера с их сотрудниками.
Но можно понять "находящихся в зрительном зале". Ведь Шмидт – Перлмуттер предъявили им действительно только намёк! Знай "зрительный зал" нашу новорелятивистскую теорию, которая просто-таки требует от галактик перлмуттеровского удаления устойчиво уже не укладываться в действующую хабблову закономерность, то вовсе не намёком представлялось бы наблюдение галактики, вместе со входящей в неё сверхновой "не так" от нас удаляющейся. А чем? А начавшейся подтверждаемостью! А без того, да если строго брать, то что получается? Единичная галактика выбилась из закономерности? Так исключения только подтверждают правило, – вполне, то есть, д'oлжно думать пока, что галактика отклонилась по индивидуальной причине. Расширение же круга таких галактик – вопрос весьма проблемный. Поскольку сверхновые – не такое уж частое событие. Тем более, когда речь о сверхновых лишь определённого типа. Даже если иметь в виду множество галактик – сколько их там удаётся наблюдателю за ночь отсканировать на предмет появления сверхновой. Отчего расширенная – после Шмидта – Перлмуттера – наблюденческая база до сих пор предстаёт недостаточной – в глазах многих.