Паутина жизни. Новое научное понимание живых систем
Шрифт:
Это положение может быть проиллюстрировано множеством простых примеров, вроде текста, приведенного Терри Уиноградом: «Томми только что подарили новый набор кубиков. Он как раз открывал коробку, когда вошел Джимми». Как поясняет Уиноград, компьютер ни за что не догадается, что лежит в коробке, мы же сразу предполагаем, что в ней лежат новые кубики Томми. Мы-то знаем, что подарки обычно приносят в коробках и что самое естественное в этом случае — открыть коробку. И, что еще более важно, мы полагаем, что два предложения в тексте взаимосвязаны, тогда как компьютер не видит смысла в том, чтобы связывать коробку с кубиками. Другими словами, наша интерпретация
Тот факт, что компьютер не может понять язык, отнюдь не означает, что он не может быть запрограммирован на распознавание простых лингвистических структур и манипуляции с ними. Действительно, в последние годы в этой области был достигнут значительный прогресс. Сегодня компьютер может распознавать несколько сотен слов и фраз, и этот базовый словарь продолжает расширяться. Так, машины все чаще используются для взаимодействия с людьми посредством структур человеческого языка и выполнения ограниченного круга заданий. Например, я могу позвонить в свой банк и запросить информацию о моем текущем счете; компьютер, если он получит также особый кодовый сигнал, сообщит мне состояние баланса, номера и суммы последних выплат и вкладов и т. п. Такое взаимодействие, предполагающее комбинацию простых произнесенных слов с набранным кодовым номером, очень удобно и полезно; но из этого вовсе не следует, что банковский компьютер понимает человеческий язык.
К сожалению, налицо поразительный диссонанс между критическими оценками АИ и радужными проектами компьютерной индустрии (последние явно мотивированы коммерческими интересами). Новейшая волна самых восторженных обещаний исходит от так называемого «проекта пятого поколения», запущенного в Японии. Анализ его грандиозных планов показывает, тем не менее, что они не более реальны, чем аналогичные предыдущие проекты, хотя вполне вероятно, что в рамках программы будет создано немало полезных побочных продуктов31.
Центральной идеей проекта пятого поколения и других подобных исследовательских программ служит разработка так называемых «экспертных систем», ориентированных на то, чтобы соперничать с экспертами-людьми в решении определенных задач. Здесь мы опять сталкиваемся с неудачным использованием терминологии. Как отмечают Уиноград и Флорес:
Называть программу «экспертом» — значит вводить в заблуждение точно так же, как и называть ее «разумной» или говорить, что она «понимает». Такое неадекватное представление может быть полезным для тех, кто пытается обеспечить финансирование своих исследований или продавать подобные программы, но оно может вызвать .необоснованные ожидания у тех, кто пытается их использовать32.
В середине 80-х философ Хьюберт Дрейфус и исследователь компьютеров Стюарт Дрейфус предприняли тщательное исследование экспертизы, проводимой людьми, и сопоставили ее с компьютерными экспертными системами. Вот что они обнаружили:
...следует расстаться с традиционным убеждением, что новичок учится на частных случаях и лишь по мере приобретения профессионального мастерства начинает абстрагировать и усваивать все более тонкие законы... Приобретение мастерства происходит как раз в противоположном направлении — от абстрактных законов к особым случаям. Похоже, что новичок делает умозаключения, используя законы и факты точно так же, как и эвристически запрограммированный компьютер, однако при наличии таланта и с приобретением соответствующего опыта новичок превращается в эксперта, который
Это замечание показывает, почему экспертные системы никогда не достигают уровня экспертов-людей: последние действуют не по жесткой системе правил, а на основе интуитивного восприятия всей совокупности фактов. Дрейфус и Дрейфус отмечают также, что экспертные системы практически проектируются на основе опроса экспертов-людей, владеющих знанием соответствующих правил. Когда это делается, эксперты чаще всего формулируют те законы, которые запомнили со времен ученичества, но перестали использовать, став профессиональными экспертами. Если эти законы ввести в компьютер, результирующая экспертная система будет копировать новичка, но никогда не сможет соперничать с настоящим экспертом.
Вероятно, наиболее важные практические применения теория Сантьяго нашла в нейробиологии и иммунологии. Как уже отмечалось, новый t взгляд на познание существенно проясняет загадку вековой давности о взаимосвязи между разумом и мозгом. Разум представляет собой не вещь, а процесс — процесс познания, тождественный процессу жизни. 1озг является специфической структурой, с помощью которой этот процесс осуществляется. Таким образом, взаимосвязь между разумом и мозгом — это взаимосвязь между процессом и структурой.
Мозг никоим образом не является единственной структурой, вовлеченной в процесс познания. Становится все более очевидным, что иммунная система человека, равно как и других позвоночных, представляет собой сеть не менее сложную и переплетенную, чем нервная система, и выполняет не менее важные координирующие функции. Классическая иммунология рассматривает иммунную систему как защитную систему тела, направленную вовне; ее часто описывают с помощью военных метафор — армии белых кровяных клеток, генералов, солдат и т. д. Последние открытия Франциско Варелы и его коллег из Парижского университета бросают серьезный вызов этой концепции34. Сегодня многие исследователи убеждены, что классический подход с его военными метафорами был одним из главных камней преткновения на пути к разгадке автоиммунных заболеваний, таких, как СПИД.
В отличие от нервной системы, сосредоточенной и связанной через анатомические структуры, иммунная система рассеяна в лимфатической жидкости, проникающей в каждую отдельную ткань. Ее компоненты — класс клеток, именуемых лимфоцитами и широко известных как белые кровяные клетки, — очень быстро передвигаются и вступают в химические связи друг с другом. Лимфоциты представляют собой группу на редкость разнообразных клеток. Каждый их тип отличается особыми молекулярными маркерами — антителами, которые выступают над поверхностью этих клеток. Человеческое тело содержит миллиарды белых кровяных клеток различного типа, которые обладают чрезвычайной способностью химически связывать любой молекулярный профиль в окружающей их среде.
Согласно традиционной иммунологии, лимфоциты обнаруживают вторгшийся агент, антитела прикрепляются к нему и таким образом его нейтрализуют. Такая последовательность означает, что белые кровяные клетки распознают чужие молекулярные профили. Более детальные исследования показывают, что этот процесс предполагает также некоторую форму обучения и запоминания. В классической иммунологии, однако, такие представления используют чисто метафорически, не связывая их с каким-либо реальным когнитивным процессом.