Почему мы не проваливаемся сквозь пол
Шрифт:
Громадное большинство кристаллических веществ не обладает достаточно высокой пластичностью при нормальных температурах, а те кристаллические вещества, которые пластичны, оказываются слишком уж пластичными. Кристаллы чистых металлов (железа, серебра, золота и т.п.) слишком мягки, настолько мягки, что практически их просто нельзя использовать. Поэтому задача металловедения - искусства и науки-заключается главным образом в том, чтобы придать таким кристаллам твердость и прочность, не сделав их при этом слишком хрупкими. Это следует делать, ограничивая движение дислокаций, но в то же время не надо тормозить его слишком уж сильно.
Инженеры любят толковать об “удлинении”, даже используют его в качестве меры пластичности. Это очень грубый
Для большинства металлических сплавов удлинение порядка 5-10% оказывается достаточным для того, чтобы обеспечить удовлетворительную вязкость. Чаще всего на практике используют малоуглеродистые стали, имеющие удлинение до 50-60%, но довольно низкую прочность. Частично это объясняется перестраховкой из-за боязни трещин, но, кроме того, есть еще и две другие причины. Многие конструкции делают из металлических листов, прутков, труб, и обычно бывает очень удобно и дешево придать им нужную форму путем гибки в холодном состоянии. Подгоняя одну часть конструкции к другой, можно также использовать и другие довольно грубые методы. Во время войны мне говорил как-то один сборщик самолетов, что подгонку крыльев “Спитфайеров” к фюзеляжам можно выполнить только при помощи кувалды. Своими глазами я такого никогда не видел, поэтому не могу ручаться за достоверность, но подобного рода вещи случаются, хотя, пожалуй, и не в авиационной промышленности и не в мирное время.
Вторая причина связана с тем, что перераспределение напряжений в конструкции может сгладить опасные напряжения. Дело в том, что иногда бывает очень трудным сколько-нибудь точно определить нагрузки во всех элементах сложной конструкции, а кое-кому это может показаться просто слишком обременительным занятием. Если же материал течет и имеет большой пластический участок, то перегруженный элемент может просто больше деформироваться, что не так уж и опасно для него. Многие инженеры свято верят в такие “самопроектирующиеся” конструкции.
Теперь нам понятны преимущества пластичных металлов в реальном мире с его несовершенствами и соображениями коммерции. Легко объясняется теперь и широчайшее распространение мягких сталей, алюминия, меди. Но вместе с тем с пластичностью связаны и два недостатка. Пластичность даже самых мягких металлов не бесконечна, и так как способов измерить, какая доля пластичности уже исчерпана при изготовлении детали, обычно нет, остается лишь догадываться, сколько же пластичности сохранилось на то, чтобы обеспечивать вязкость в ходе эксплуатации. Когда ломаются изделия массового производства, именно в этом незнании кроется корень зла. Отжиг - операция достаточно прихотливая, к тому же она связана с дополнительными расходами, а малые детальки имеют грошовую цену, поэтому трудно воспротивиться стремлению деформировать металл в таких случаях вхолодную.
Другой недостаток заключается в том, что
(обратно)
Краевые и винтовые дислокации
Теория дислокаций чрезвычайно сложна и в конце-то концов наибольший интерес она представляет, по-видимому, для узких специалистов. Однако нам следует упомянуть о двух основных типах дислокаций - краевой и винтовой. Краевая дислокация была введена в обиход Дж. Тэйлором в 1934 году. Она проще и легче для понимания. Как мы уже говорили о ней в главе 3 (рис. 28), она создана, по существу, лишним слоем атомов, вдвинутым в кристалл словно лист бумаги, наполовину вложенный между страницами книги. Краевые дислокации могут возникнуть в процессе образования кристалла. Примером их могут служить так называемые “малоугловые границы”: когда два растущих кристалла встречаются под небольшим углом и соединяются вместе, образуя сплошное тело, линия их соединения оказывается цепочкой краевых дислокаций, которые впоследствии могут, конечно, перебраться на новые места.
Существование винтовых дислокаций предсказал в 1948 году Франк. Они понадобились ему не столько для объяснения механических свойств кристаллов, сколько для объяснения их роста. Переход атомов или молекул из раствора или из пара и более или менее непрерывное осаждение их на растущем твердом кристалле сопровождается изменением энергии системы. Пойдет или не пойдет такой процесс - зависит от так называемого пересыщения, грубо говоря, от того насколько охотно молекулы покидают раствор или пар. Можно, например охладить раствор сахара или соли значительно ниже температуры, при которой должны расти кристаллы, а кристаллы не появятся, пока не окажется для них подходящей поверхности.
Для гладкой плоской поверхности можно вычислить степень пересыщения, которой можно достичь без выпадения материала. Она оказывается довольно большой. Франка занимало, что на практике многие кристаллы растут себе на здоровье при пересыщениях, которые намного меньше теоретически рассчитанных для присоединения атомов к плоской поверхности. И в самом деле, если бы нам всегда пришлось осаждать кристаллы только на плоскую поверхность, многие кристаллы вряд ли вообще были бы получены. Но можно показать, что если поверхность имеет нерегулярность, неровность, такую, как, например, ступенька высотою хотя бы в одну молекулу, - осаждение будет намного легче.
Ступенька дает довольно уютное пристанище блуждающим молекулам, которые стремятся осесть именно здесь. Так и каменщик кладет кирпичи на уступе кладки. И точно так же, как и в случае кирпичной кладки, добавив один элементик, мы не уничтожим ступеньку, а лишь переместим ее вдоль верхушки стены. Этот механизм в действии наблюдали Банн и Эммет в 1946 году. Напомним, что именно так получаются ступеньки, которые ослабляют поверхность усов и других кристаллов (глава 3).
Франк рассуждал примерно так. Допустим, что ступеньки роста существуют. Что же тогда получается, когда движущаяся ступенька доходит до кромки кристалла? По-видимому, она должна исчезнуть, как исчезает уступ на кирпичной стене, когда каменщик достигает конца стены. Если так, то как могла бы возродиться ступенька, чтобы начал расти следующий слой?
Ответ Франка был блестяще прост. Кристаллы никогда не строятся, как дома, из слоев кирпича. Ступенька роста никогда не исчезает на кромке, потому что кристалл строится подобно винтовой лестнице. Значит, кристалл просто “накручивается” сам на себя, все время используя одну и ту же ступеньку. Подобно тэйлоровой гипотезе о краевых дислокациях, идея о винтовых дислокациях покоряла своей логикой, и интуитивно казалось, что она должна быть верной. Так оно и получилось. Вскоре Форти и другие экспериментаторы подтвердили существование винтовых дислокаций (рис. 50).