Почему. Руководство по поиску причин и принятию решений
Шрифт:
Со времен Юма главный вызов заключался в следующем: как отличить каузальные и некаузальные паттерны осуществления событий? В 60–70-х годах XX века появились три основных метода, построенные на трудах Юма. Следствие редко проистекает от воздействия единственной причины, поэтому Джон Мэки [21] разработал теорию, представляющую собой набор условий, которые совместно производят следствия. Эта теория позволяет лучше исключить некаузальные взаимосвязи, исходя из сложности причин [22] . Точно так же многие каузальные взаимосвязи включают в себя элемент случайности, когда причины просто с большей вероятностью вызывают соответствующие следствия. Причем необязательно, что подобное будет происходить каждый раз (согласно вероятностным подходам Патрика Суппеса [23] и др. [24] ). Юм также заложил основы контрфактуального подхода, задача
21
Джон Мэки (1917–1981) – австралийский философ. Внес значительный вклад в философию религии, метафизику, философию языка. Прим. ред.
22
Mackie (1974).
23
Патрик Суппес (1922–2014) – американский философ, логик и психолог. Область его исследований – от общих до специальных вопросов философии физики, психологии и педагогики. Развивал вероятностную концепцию причинности, был резко против лапласовского детерминизма, концепций абсолютной достоверности и полноты научного знания. Прим. ред.
24
Suppes (1970).
25
Lewis (1973).
Кажется, что у всех этих философских трудов нет ничего общего с вычислительными методами, но это не так. Для компьютерщиков этаким святым Граалем в сфере искусственного разума стала возможность автоматизировать человеческое мышление, а ключевым элементом оказалось нахождение причин и формулировка объяснений. Это используется и в робототехнике (роботам нужны модели мира, чтобы планировать действия и предсказывать их последствия), в рекламе (компания Amazon лучше формулирует рекомендации для целевой аудитории, если знает, что заставило вас кликнуть по клавише «купить прямо сейчас») и медицине (врачи отделения интенсивной терапии моментально узнают, почему состояние пациента внезапно изменилось). И все же для разработки алгоритмов (последовательности шагов по решению задачи) мы должны конкретизировать проблему. Чтобы создать программу для выявления причин, требуется их рабочее определение.
В 1980-х годах группа специалистов по информационным технологиям под руководством Джуды Перла [26] доказала, что философские теории, определяющие каузальные взаимосвязи в терминах вероятностей, можно представить графически, обеспечив одновременно визуальное изображение причинных связей и способ кодирования математических зависимостей между переменными. Что еще важнее, эксперты предложили методы построения графических моделей на основе предварительного знания и методов их выведения из имеющихся данных [27] . Эти работы породили множество новых вопросов. Можно ли определить взаимосвязь там, где запаздывание между причиной и следствием – величина переменная? Если сами взаимосвязи со временем изменяются, что мы можем узнать? Кроме того, компьютерщики разработали метод автоматизации поиска объяснений, а также методы тестирования объяснений для каждой модели.
26
Джуда Перл (р. 1936) – американо-израильский ученый, автор математического аппарата байесовских сетей, создатель математической и алгоритмической базы вероятностного вывода, автор алгоритма распространения доверия для графических вероятностных моделей, do-исчисления и исчисления противофактических условных. В 2011 году стал лауреатом премии Тьюринга за «фундаментальный вклад в искусственный интеллект посредством разработки исчисления для проведения вероятностных и причинно-следственных рассуждений». Прим. ред.
27
Техническое вступление к этой работе можно найти у Pearl (2000) и Spirtes et al. (2000).
В последние несколько десятилетий заметен существенный прогресс, но многие проблемы по-прежнему не решены – главным образом потому, что нашей жизнью все в большей степени правит информация. Однако вместо тщательно выверенных баз данных, собираемых исключительно в рамках научных исследований, мы имеем дело с громадным массивом неопределенных сведений, полученных в результате простых наблюдений.
Представим на первый взгляд несложную проблему: определить социальный статус людей по данным Facebook. Первая сложность заключается в том, что этой социальной сетью пользуется далеко не каждый, так что вы изучите лишь определенную группу, которая может не быть репрезентативной для населения в целом. Вторая: не все используют Facebook одинаково. Кто-то вообще не указывает статус отношений, кто-то лжет, а кто-то просто не обновляет профиль.
Итак, возникла масса проблем с формулированием выводов о причинных зависимостях. Самые важные заключаются в поиске причин на основе неточных данных или данных, в которых отсутствуют необходимые переменные
Что интересно, именно массивы данных, к примеру электронные медицинские карты, сводят на одном поле здравоохранения специалистов как по эпидемиологии, так и по информатике, которые разбираются в факторах, влияющих на здоровье населения. Доступность исторических данных о состоянии здоровья больших групп населения – их диагнозы, симптомы, лечение, экологические условия проживания и многое другое – становится громадным преимуществом для исследователей, старающихся понять факторы, которые влияют на состояние здоровья, а затем использовать это понимание для плановых действий в здравоохранении. Соответствующие вызовы лежат одновременно в области планов клинических исследований (с традиционным упором на эпидемиологические аспекты) и в возможности делать эффективные и достоверные заключения на основе крупных наборов данных (здесь главное место отводится компьютерной науке).
Эпидемиология, с точки зрения стоящих перед ней целей, имеет долгую историю разработки методов выявления причин – начиная с Джеймса Линда, который выборочно обследовал моряков, чтобы узнать причины цинги [28] , и Джона Сноу, который обнаружил, что холера передается через зараженную воду [29] , до Коха, который выявил связь между бактериями и туберкулезом [30] , и Остина Хилла, связавшего рак легких с курением и сформулировавшего инструкции по оценке каузальных утверждений [31] .
28
Lind (1757).
29
Snow (1855).
30
Koch (1932).
31
Hill (1965).
Медицинские исследования в наше время основываются на данных больше, чем когда-либо в истории. И больницы, и отдельные специалисты, оказывающие врачебные услуги, переводят данные о пациентах из бумажных в электронные форматы, при этом они должны следовать определенным критериям их применения (например, на основе данных принимаются врачебные решения). И все же большинство задач по соответствию этим критериям включает в себя анализ больших и сложных массивов информации, для которого нужны вычислительные методы.
Нейробиологи имеют доступ к обширным объемам информации о мозговой деятельности, содержащимся в записях ЭЭГ и МРТ [32] , и для их анализа берутся на вооружение методы из области экономики и информационных технологий. Данные ЭЭГ – это, по сути, количественные, числовые записи мозговой активности, которые структурно не слишком отличаются от информации фондового рынка, сообщающей цены на акции и объемы торгов в динамике. Клайв Грэнджер [33] сформулировал теорию причинности в терминах экономических временных рядов (и получил за это Нобелевскую премию), но сам метод не связан с экономикой и применялся также к другой биологической информации, например к биочипам для анализа экспрессии генов (на их основе измеряется динамика активности генов) [34] .
32
ЭЭГ – электроэнцефалограмма; МРТ – магнитно-резонансная томография. Прим. перев.
33
Клайв Грэнджер (1934–2009) – английский экономист, лауреат Нобелевской премии по экономике (2003) «за разработку методов анализа экономических временных рядов с общими трендами». Прим. ред.
34
Granger (1980).
Основная проблема в сфере экономики – определить, поможет ли реализация той или иной программы достичь поставленной цели. Это очень похоже на проблемы общественного здравоохранения, например попытки определить, поспособствует ли ограничение продаж газированных напитков борьбе с ожирением. Эта задача – одна из самых сложных, так как во многих случаях сам факт реализации программы инициирует изменения в системе.
В главе 9 мы увидим, как поспешное внедрение программы по сокращению размера учебных классов в штате Калифорния дало результаты, сильно отличавшиеся от тех, к которым привел первый эксперимент в Теннесси. Вмешательство может иметь положительный эффект при условии, что в остальном обстоятельства остаются прежними, а новая политика изменяет человеческое поведение. Если применение законов об использовании ремней безопасности снизило количество нарушений ПДД, а уровень смертности при этом поднялся, важно определить степень воздействия дорожного законодательства и решить, дать обратный ход жестким нормам или, напротив, ввести новые.